Refined Design and Optimization of Underground Medium and Long Hole Blasting Parameters—A Case Study of the Gaofeng Mine
Abstract
:1. Introduction
2. Inversion of Medium-Deep Hole Blasting Parameters Based on Blasting Crater Test
2.1. Engineering Background
2.2. Blasting Crater Test Scheme
2.3. Analysis of Experimental Results
- (1)
- Unit loading q = 1.58 kg/m.
- (2)
- Hole distance a = 1.6 m.
- (3)
- Resistance line b = 1.4 m.
3. Blasting Parameter Optimization Based on Numerical Simulation
3.1. Model Building
3.2. Material Parameter
3.2.1. Rock Material Model
3.2.2. Explosive Material Model
3.3. Modeling Scheme
3.4. Analysis of Numerical Simulation Results
3.4.1. Blasting Rock-Breaking Analysis
3.4.2. Influence of Resistance Line on Blasting Effect
3.4.3. Analysis of Hole Distance Simulation Results
4. Field Blasting Test
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, Y.H.; Lei, H.Y.; Yang, J.; Song, Y.S.; Ye, G.X. Numerical Simulation of Zhenyuan Gold Mine Blasting Parameters. Blasting 2019, 36, 77–83. [Google Scholar]
- Gen, G.G.; Chi, E.A.; Liu, F.Q. Analysis on Causes of Producing Boulder in Medium-length Hole Blasting and the Technical Measures for Reducing Boulder Yield. Min. Res. Dev. 2011, 4, 104–106. [Google Scholar]
- Zhao, G.Y.; Zhang, L.; Chen, Z.Q.; Wu, J.J.; Dong, L.J. Nonlinear Prediction of Mefium-depth Hole Blasting Effects. Min. Metall. Eng. 2010, 30, 1–4. [Google Scholar]
- Ren, G.F.; Wang, W.; Feng, H.Y.; Yuan, Y.Q. Optimization Study on Mid-length Hole BlastParameters in Rongguan No. 1 Mine. Blasting 2011, 28, 34–35. [Google Scholar]
- Stanković, S.; Dobrilović, M.; Škrlec, V. Optimal positioning of vibration monitoring instruments and their impact on blast-induced seismic influence results. Arch. Min. Sci. 2019, 64, 591–607. [Google Scholar]
- Sołtys, A. Assessment of the impact of blasting works on buildings locatedin the vicinity of open-pit mines using matching pursuit algorithm. Arch. Min. Sci. 2020, 65, 199–212. [Google Scholar]
- Himanshu, V.K.; Roy, M.P.; Shankar, R.; Mishra, A.K.; Singh, P.K. Empirical approach based estimation of charge factor and dimensional parameters in underground blasting. Min. Metall. Explor. 2021, 38, 1059–1069. [Google Scholar] [CrossRef]
- Guo, J.P.; Wang, J.; Li, J.Q. Study on Optimum Design of Blasting Hole Arrangement in Medium-length Hole Blasting. Blasting 2017, 34, 79–84. [Google Scholar]
- Xie, X.Q.; Lu, W.B. 3P (PRECISE, PUNCTILIOUS, AND PERFECT) BLASTING. Eng. Blasting 2008, 14, 1–7. [Google Scholar]
- Pal Roy, P.; Sawmliana, C.; Bhagat, N.K.; Madhu, M. Induced caving by blasting: Innovative experiments in blasting gallery panels of underground coal mines of India. Min. Technol. 2003, 112, 57–63. [Google Scholar] [CrossRef]
- Widodo, S.; Anwar, H.; Syafitri, N.A. Comparative Analysis of ANFO and Emulsion Application on Overbreak and Underbreak at Blasting Development Activity in Underground Deep Mill Level Zone (DMLZ) PT Freeport Indonesia; IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 279, p. 012001. [Google Scholar]
- Jeon, S.; Kim, T.H.; You, K.H. Characteristics of crater formation due to explosives blasting in rock mass. Geomech. Eng 2015, 9, 329–344. [Google Scholar] [CrossRef]
- Zheng, X.S.; Wang, J.; Zhou, N.S. Serial Blasting Crate Tests Confirm Medium-length Hole Blasting Parameter of Non-pillar Sublevel Caving Method. Blasting 2009, 26, 50–53. [Google Scholar]
- Monjezi, M.; Khoshalan, H.A.; Varjani, A.Y. Optimization of open pit blast parameters using genetic algorithm. Int. J. Rock Mech. Min. Sci. 2011, 48, 864–869. [Google Scholar] [CrossRef]
- Dehghani, H.; Pourzafar, M. Prediction and minimization of blast-induced flyrock using gene expression programming and cuckoo optimization algorithm. Environ. Earth Sci. 2021, 80, 12. [Google Scholar] [CrossRef]
- Saghatforoush, A.; Monjezi, M.; Shirani Faradonbeh, R.; Jahed Armaghani, D. Combination of neural network and ant colony optimization algorithms for prediction and optimization of flyrock and back-break induced by blasting. Eng. Comput. 2016, 32, 255–266. [Google Scholar] [CrossRef]
- Bastami, R.; Bazzazi, A.A.; Shoormasti, H.H.; Ahangari, K. Predicting and minimizing the blasting cost in limestone mines using a combination of gene expression programming and particle swarm optimization. Arch. Min. Sci. 2020, 65, 835–850. [Google Scholar]
- Sirjani, A.K.; Sereshki, F.; Ataei, M.; Hosseini, M.A. Prediction of Backbreak in the Blasting Operations using Artificial Neural Network (ANN) Model and Statistical Models (Case study: Gol-e-Gohar Iron Ore Mine No. 1). Arch. Min. Sci. 2022, 67, 107–121. [Google Scholar]
- An, H.M.; Liu, H.Y.; Han, H.; Zheng, X.; Wang, X.G. Hybrid finite-discrete element modelling of dynamic fracture and resultant fragment casting and muck-piling by rock blast. Comput. Geotech. 2017, 81, 322–345. [Google Scholar] [CrossRef]
- Huang, C.; Li, J.T.; Zhao, Y.; Liu, S.F. Optimization of Blasting Parameters for Dongguashan Copper Mine Based on PFC2D. Min. Metall. Eng. 2022, 42, 1–4. [Google Scholar]
- Jiang, N.; Zhou, C.; Luo, X.; Lu, S. Damage characteristics of surrounding rock subjected to VCR mining blasting shock. Shock. Vib. 2015, 2015, 373021. [Google Scholar] [CrossRef] [Green Version]
- Mejía, N.; Mejía, R.; Toulkeridis, T. Characterization of Blast Wave Parameters in the Detonation Locus and Near Field for Shaped Charges. Mathematics 2022, 10, 3261. [Google Scholar] [CrossRef]
- He, L.; Wang, J.; Xiao, J.; Tang, L.; Lin, Y. Pre-splitting blasting vibration reduction effect research on weak rock mass. Disaster Adv. 2013, 6, 338–343. [Google Scholar]
- Ma, G.W.; An, X.M. Numerical simulation of blasting-induced rock fractures. Int. J. Rock Mech. Min. Sci. 2008, 45, 966–975. [Google Scholar] [CrossRef]
- Zhao, D.; Shen, Z.; Li, M.; Liu, B.; Chen, Y.; Xie, L. Study on parameter optimization of deep hole cumulative blasting in low permeability coal seams. Sci. Rep. 2022, 12, 5126. [Google Scholar] [CrossRef]
- Huo, X.; Shi, X.; Qiu, X.; Zhou, J.; Gou, Y.; Yu, Z.; Ke, W. Rock damage control for large-diameter-hole lateral blasting excavation based on charge structure optimization. Tunn. Undergr. Space Technol. 2020, 106, 103569. [Google Scholar] [CrossRef]
- Sun, Q.; Shan, C.; Wu, Z.; Wang, Y. Case Study: Mechanism and Effect Analysis of Presplitting Blasting in Shallow Extra-Thick Coal Seam. Arch. Min. Sci. 2022, 67, 381–399. [Google Scholar]
- Zhang, X.L.; Yi, H.B.; Ma, H.H.; Shen, Z.W. Blast parameter optimization study based on a blast crater experiment. Shock. Vib. 2018, 2018, 8031735. [Google Scholar] [CrossRef] [Green Version]
- Jiang, F.L.; Zhou, K.P.; Deng, H.W.; Pan, D.; Li, K. Blasting Crater Test for Underground Mine’s Long-hole Caving. Min. Metall. Eng. 2010, 30, 10–13. [Google Scholar]
- Zhi, W.; Luo, J.; Wang, L.H. Experimental Study on Medium and Deep Hole Blasting Parameters in Panlong Lead Zinc Mine. Min. Technol. 2016, 16, 83–86. [Google Scholar]
- You, Y.Y.; Cui, Z.R.; Zhang, X.L.; You, S.; Kang, Y.Q.; Xiao, C.L.; Lu, F.X. Optimum seam forming angle of double-linear shaped charge in engineering blasting. Explos. Shock. Waves 2023, 43, 025201-1–025201-15. [Google Scholar]
- Gao, F.; Tang, L.; Yang, C.; Yang, P.; Xiong, X.; Wang, W. Blasting-induced rock damage control in a soft broken roadway excavation using an air deck at the blasthole bottom. Bull. Eng. Geol. Environ. 2023, 82, 97. [Google Scholar] [CrossRef]
- Abdel-Kader, M. Modified settings of concrete parameters in RHT model for predicting the response of concrete panels to impact. Int. J. Impact Eng. 2019, 132, 103312. [Google Scholar] [CrossRef]
- Ding, Y.Q.; Tang, W.H.; Zhang, R.Q.; Ran, X.W. Determination and validation of parameters for Riedel-Hiermaier-Thoma concrete model. Def. Sci. J. 2013, 63, 524–530. [Google Scholar] [CrossRef]
- Xie, L.X.; Lu, W.B.; Zhang, Q.B.; Jiang, Q.H.; Chen, M.; Zhao, J. Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses. Tunn. Undergr. Space Technol. 2017, 66, 19–33. [Google Scholar] [CrossRef]
- Wang, H.C.; Wang, Z.L.; Wang, J.G.; Wang, S.M.; Wang, H.R.; Yin, Y.G.; Li, F. Effect of confining pressure on damage accumulation of rock under repeated blast loading. Int. J. Impact Eng. 2021, 156, 103961. [Google Scholar] [CrossRef]
- Li, H.C.; Liu, D.S.; Zhao, L. Study on parameters determination of marble RHT model. Trans. Beijing Inst. Technol 2017, 37, 801–806. [Google Scholar]
- Sanchidrian, J.A.; Castedo, R.; Lopez, L.M.; Segarra, P.; Santos, A.P. Determination of the JWL constants for ANFO and emulsion explosives from cylinder test data. Cent. Eur. J. Energetic Mater. 2015, 12, 177–194. [Google Scholar]
- Esmaeili, M.; Tavakoli, B. Finite element method simulation of explosive compaction in saturated loose sandy soils. Soil Dyn. Earthq. Eng. 2019, 116, 446–459. [Google Scholar] [CrossRef]
- Yang, Y.; Shao, Z.; Mi, J.; Xiong, X. Effect of adjacent hole on the blast-induced stress concentration in rock blasting. Adv. Civ. Eng. 2018, 2018, 5172878. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.W. The Application of Deep Hole Blasting Parameter Optimization in BaRun Mining Fracture Rock. Ph.D. Thesis, Inner Mongolia University of Science and Technology, Baotou, China, 2016. [Google Scholar]
- Liu, C.Y.; Yang, J.X.; Yu, B. Rock-breaking mechanism and experimental analysis of confined blasting of borehole surrounding rock. Int. J. Min. Sci. Technol. 2017, 27, 795–801. [Google Scholar]
- Wang, P. Parameter–Optimization in Medium-Length Hole of Sublevel Caving without Sill Pillar. Master’s Thesis, China University of Geosciences, Wuhan, China, 2009. [Google Scholar]
Parameter | Unit | Value | Parameter | Unit | Value |
---|---|---|---|---|---|
Optimum depth of explosive | 0.5 | Optimum crater radius | 0.58 | ||
Critical burial depth of explosives | 0.67 | Optimal crater volume | 0.32 | ||
Optimum depth ratio | 0.74 | Strain energy coefficient | E | 1.01 | |
Optimum hole base spacing | 1.0 | Optimum resistance line | 0.9 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Mass density (kg/m3) | 4530 | Tensile strain rate dependence exponent BETAT | 0.0189 |
Elastic shear modulus (GPa) | 17.39 | Pressure influence on plastic flow in tension PTF | 0.001 |
Eroding plastic strain EPSF | 2.0 | Compressive yield surface parameter GC* | 0.53 |
Parameter for polynomial EOS B0 | 1.2 | Tensile yield surface parameter GT* | 0.7 |
Parameter for polynomial EOS B1 | 1.2 | Shear modulus reduction factor XI | 0.5 |
Parameter for polynomial EOS T1 (GPa) | 39.15 | Damage parameter D1 | 0.04 |
Failure surface parameter A | 2.1 | Damage parameter D2 | 1 |
Failure surface parameter N | 0.125 | Minimum damaged residual strain EPM | 0.015 |
Compressive strength FC (GPa) | 85.62 | Residual surface parameter AF | 1.6 |
Relative shear strength FS* | 0.2311 | Residual surface parameter NF | 0.61 |
Relative tensile strength FT* | 0.048 | Gruneisen gamma GAMMA | 0 |
Lode angle dependence factor Q0 | 0.68 | Hugoniot polynomial coefficient A1 (GPa) | 39.15 |
Lode angle dependence factor B | 0.05 | Hugoniot polynomial coefficient A2 (GPa) | 46.98 |
Parameter for polynomial EOS T2 | 0 | Hugoniot polynomial coefficient A3 (GPa) | 9.004 |
Reference compressive strain rate EOC | 3 × 10−5 | Crush pressure PEL (MPa) | 57.08 |
Reference tensile strain rate EOT | 3 × 10−6 | Compaction pressure PCO (GPa) | 6.0 |
Break compressive strain rate EC | 3 × 1025 | Porosity exponent NP | 3.0 |
Break tensile strain rate ET | 3 × 1025 | Initial porosity ALPHA | 1.1 |
Compressive strain rate dependence exponent BETAC | 0.0144 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, F.; Li, X.; Xiong, X.; Lu, H.; Luo, Z. Refined Design and Optimization of Underground Medium and Long Hole Blasting Parameters—A Case Study of the Gaofeng Mine. Mathematics 2023, 11, 1612. https://doi.org/10.3390/math11071612
Gao F, Li X, Xiong X, Lu H, Luo Z. Refined Design and Optimization of Underground Medium and Long Hole Blasting Parameters—A Case Study of the Gaofeng Mine. Mathematics. 2023; 11(7):1612. https://doi.org/10.3390/math11071612
Chicago/Turabian StyleGao, Feng, Xin Li, Xin Xiong, Haichuan Lu, and Zengwu Luo. 2023. "Refined Design and Optimization of Underground Medium and Long Hole Blasting Parameters—A Case Study of the Gaofeng Mine" Mathematics 11, no. 7: 1612. https://doi.org/10.3390/math11071612
APA StyleGao, F., Li, X., Xiong, X., Lu, H., & Luo, Z. (2023). Refined Design and Optimization of Underground Medium and Long Hole Blasting Parameters—A Case Study of the Gaofeng Mine. Mathematics, 11(7), 1612. https://doi.org/10.3390/math11071612