Data-Driven pH Model in Raceway Reactors for Freshwater and Wastewater Cultures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modelled Photobioreactors
2.2. Artificial Neural Networks
2.3. Deep Learning Toolbox
2.4. Performance Metrics
3. Results
3.1. Model Development
3.1.1. Data Processing
- Modification of the data sample time to 1 min.
- Selection of valid spans for training.
- Outlier filtering.
3.1.2. Model Structure
3.1.3. Model Training
3.2. Model Performance Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DO | Dissolved Oxygen |
ANN | Artificial Neural Network |
MPC | Model Predictive Control |
LSTM | Long Short-Term Memory |
NARX | Nonlinear AutoRegressive with eXogenous inputs |
TDL | Tapped Delay Line |
MSE | Mean Squared Error |
References
- Guzmán, J.L.; Acién, F.G.; Berenguel, M. Modelling and control of microalgae production in industrial photobioreactors. Rev. Iberoam. Autom. Inform. Ind. 2020, 18, 1–18. [Google Scholar] [CrossRef]
- Acién Fernández, F.G.; Fernández Sevilla, J.M.; Molina Grima, E. Contribución de las microalgas al desarrollo de la bioeconomía. Mediterr. Econ. 2018, 31, 309–332. [Google Scholar]
- Hernández-Pérez, A.; Labbé, J.I. Microalgae, culture and benefits. Rev. Biol. Mar. Oceanogr. 2014, 49, 157–173. [Google Scholar] [CrossRef] [Green Version]
- Pittman, J.K.; Dean, A.P.; Osundeko, O. The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 2011, 102, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B. Microalgae and wastewater treatment. Saudi J. Biol. Sci. 2012, 19, 257–275. [Google Scholar] [CrossRef] [Green Version]
- De Andrade, G.A.; Berenguel, M.; Guzmán, J.L.; Pagano, D.J.; Acién, F.G. Optimization of biomass production in outdoor tubular photobioreactors. J. Process. Control. 2016, 37, 58–69. [Google Scholar] [CrossRef]
- Barceló-Villalobos, M.; Serrano, C.G.; Zurano, A.S.; García, L.A.; Maldonado, S.E.; Peña, J.; Fernández, F.G. Variations of culture parameters in a pilot-scale thin-layer reactor and their influence on the performance of Scenedesmus almeriensis culture. Bioresour. Technol. Rep. 2019, 6, 190–197. [Google Scholar] [CrossRef]
- Banerjee, S.; Ramaswamy, S. Dynamic process model and economic analysis of microalgae cultivation in open raceway ponds. Algal Res. 2017, 26, 330–340. [Google Scholar] [CrossRef]
- Sfez, S.; Van Den Hende, S.; Taelman, S.E.; De Meester, S.; Dewulf, J. Environmental sustainability assessment of a microalgae raceway pond treating aquaculture wastewater: From up-scaling to system integration. Bioresour. Technol. 2015, 190, 321–331. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, X.; Guo, D.; Ye, T.; Xiong, M.; Zhu, L.; Liu, C.; Jin, S.; Hu, Z. Operation of a vertical algal biofilm enhanced raceway pond for nutrient removal and microalgae-based byproducts production under different wastewater loadings. Bioresour. Technol. 2018, 253, 323–332. [Google Scholar] [CrossRef]
- Sánchez-Zurano, A.; Rodríguez-Miranda, E.; Guzmán, J.L.; Acién-Fernández, F.G.; Fernández-Sevilla, J.M.; Molina Grima, E. Abaco: A new model of microalgae-bacteria consortia for biological treatment of wastewaters. Appl. Sci. 2021, 11, 998. [Google Scholar] [CrossRef]
- Mairet, F.; Muñoz-Tamayo, R.; Bernard, O. Adaptive control of light attenuation for optimizing microalgae production. J. Process. Control. 2015, 30, 117–124. [Google Scholar] [CrossRef]
- Sompech, K.; Chisti, Y.; Srinophakun, T. Design of raceway ponds for producing microalgae. Biofuels 2012, 3, 387–397. [Google Scholar] [CrossRef]
- Kazbar, A.; Cogne, G.; Urbain, B.; Marec, H.; Le-Gouic, B.; Tallec, J.; Takache, H.; Ismail, A.; Pruvost, J. Effect of dissolved oxygen concentration on microalgal culture in photobioreactors. Algal Res. 2019, 39, 101432. [Google Scholar] [CrossRef] [Green Version]
- De-Luca, R.; Bezzo, F.; Béchet, Q.; Bernard, O. Exploiting meteorological forecasts for the optimal operation of algal ponds. J. Process. Control. 2017, 55, 55–65. [Google Scholar] [CrossRef]
- González, J.; Rodríguez-Miranda, E.; Guzmán, J.L.; Acién, F.G.; Visioli, A. Temperature optimization in microalgae raceway reactors by depth regulation. Rev. Iberoam. Autom. Inform. Ind. 2022, 19, 164–173. [Google Scholar] [CrossRef]
- Posadas, E.; Morales, M.d.M.; Gomez, C.; Acién, F.G.; Muñoz, R. Influence of pH and CO2 source on the performance of microalgae-based secondary domestic wastewater treatment in outdoors pilot raceways. Chem. Eng. J. 2015, 265, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Bernard, O.; Mairet, F.; Chachuat, B. Modelling of Microalgae Culture Systems with Applications to Control and Optimization. In Microalgae Biotechnology; Posten, C., Feng, C.S., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 59–87. [Google Scholar] [CrossRef]
- García-Mañas, F.; Guzmán, J.L.; Berenguel, M.; Acién, F.G. Biomass estimation of an industrial raceway photobioreactor using an extended Kalman filter and a dynamic model for microalgae production. Algal Res. 2019, 37, 103–114. [Google Scholar] [CrossRef]
- Fernández, I.; Acién, F.G.; Berenguel, M.; Guzmán, J.L. First principles model of a tubular photobioreactor for microalgal production. Ind. Eng. Chem. Res. 2014, 53, 11121–11136. [Google Scholar] [CrossRef]
- Pawlowski, A.; Guzmán, J.L.; Berenguel, M.; Acién, F.G. Control system for pH in raceway photobioreactors based on Wiener models. IFAC-PapersOnLine 2019, 52, 928–933. [Google Scholar] [CrossRef]
- Pawlowski, A.; Fernández, I.; Guzmán, J.L.; Berenguel, M.; Acién, F.G.; Dormido, S. Event-based selective control strategy for raceway reactor: A simulation study. IFAC-PapersOnLine 2016, 49, 478–483. [Google Scholar] [CrossRef]
- Fernández, I.; Acién, F.G.; Fernández, J.M.; Guzmán, J.L.; Magán, J.J.; Berenguel, M. Dynamic model of microalgal production in tubular photobioreactors. Bioresour. Technol. 2012, 126, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Fernández, I.; Acién, F.G.; Guzmán, J.L.; Berenguel, M.; Mendoza, J.L. Dynamic model of an industrial raceway reactor for microalgae production. Algal Res. 2016, 17, 67–78. [Google Scholar] [CrossRef]
- Rodríguez-Miranda, E.; Acién, F.G.; Guzmán, J.L.; Berenguel, M.; Visioli, A. A new model to analyze the temperature effect on the microalgae performance at large scale raceway reactors. Biotechnol. Bioeng. 2021, 118, 877–889. [Google Scholar] [CrossRef]
- Ifrim, G.A.; Titica, M.; Cogne, G.; Boillereaux, L.; Legrand, J.; Caraman, S. Dynamic pH model for autotrophic growth of microalgae in photobioreactor: A tool for monitoring and control purposes. AIChE J. 2014, 60, 585–599. [Google Scholar] [CrossRef]
- Pawlowski, A.; Mendoza, J.L.; Guzman, J.L.; Berenguel, M.; Acien, F.G.; Dormido, S. Effective utilization of flue gases in raceway reactor with event-based pH control for microalgae culture. Bioresour. Technol. 2014, 170, 1–9. [Google Scholar] [CrossRef]
- Rodríguez-Miranda, E.; Guzmán, J.; Berenguel, M.; Acién, F.; Visioli, A. Diurnal and nocturnal pH control in microalgae raceway reactors by combining classical and event-based control approaches. Water Sci. Technol. 2020, 82, 1155–1165. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Sci. 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Rajendra, P.; Brahmajirao, V. Modeling of dynamical systems through deep learning. Biophys. Rev. 2020, 12, 1311–1320. [Google Scholar] [CrossRef]
- Kiš, K.; Klaučo, M. Neural network based explicit MPC for chemical reactor control. Acta Chim. Slovaca 2020, 12, 218–223. [Google Scholar] [CrossRef] [Green Version]
- Pon Kumar, S.S.; Tulsyan, A.; Gopaluni, B.; Loewen, P. A deep learning architecture for predictive control. IFAC-PapersOnLine 2018, 51, 512–517. [Google Scholar] [CrossRef]
- Correa, I.; Drews, P.; Botelho, S.; De Souza, M.S.; Tavano, V.M. Deep learning for microalgae classification. In Proceedings of the 16th IEEE International Conference on Machine Learning and Applications, ICMLA 2017, Cancun, Mexico, 18–21 December 2017; Volume 2017, pp. 20–25. [Google Scholar] [CrossRef]
- Otálora, P.; Guzmán, J.L.; Acién, F.G.; Berenguel, M.; Reul, A. Microalgae classification based on machine learning techniques. Algal Res. 2021, 55, 102256. [Google Scholar] [CrossRef]
- Otálora, P.; Guzmán, J.L.; Berenguel, M.; Acién, F.G. Dynamic Model for the pH in a Raceway Reactor using Deep Learning techniques. In Proceedings of the CONTROLO 2020. Lecture Notes in Electrical Engineering; Gonçalves, J.A., Braz-César, M., Coelho, J.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; Volume 695, pp. 190–199. [Google Scholar]
- Caparroz, M.; Otálora, P.; Guzmán, J.L.; Berenguel, M. Modelado y control adaptativo del pH en reactores raceway para la producción de microalgas. In Proceedings of the XLIII Jornadas de Automática, Logroño, Spain, 7–9 September 2022; pp. 333–340. [Google Scholar]
- Kay, R.A.; Barton, L.L. Microalgae as Food and Supplement. Crit. Rev. Food Sci. Nutr. 1991, 30, 555–573. [Google Scholar] [CrossRef]
- Xie, H.; Tang, H.; Liao, Y.H. Time series prediction based on NARX neural networks: An advanced approach. In Proceedings of the 2009 International Conference on Machine Learning and Cybernetics, Baoding, China, 12–15 July 2009; Volume 3, pp. 1275–1279. [Google Scholar] [CrossRef]
- Boussaada, Z.; Curea, O.; Remaci, A.; Camblong, H.; Mrabet Bellaaj, N. A Nonlinear Autoregressive Exogenous (NARX) Neural Network Model for the Prediction of the Daily Direct Solar Radiation. Energies 2018, 11, 620. [Google Scholar] [CrossRef] [Green Version]
- Cerinski, D.; Baleta, J.; Mikulčić, H.; Mikulandrić, R.; Wang, J. Dynamic modelling of the biomass gasification process in a fixed bed reactor by using the artificial neural network. Clean. Eng. Technol. 2020, 1, 100029. [Google Scholar] [CrossRef]
- Song, H.; Shan, X.; Zhang, L.; Wang, G.; Fan, J. Research on identification and active vibration control of cantilever structure based on NARX neural network. Mech. Syst. Signal Process. 2022, 171, 108872. [Google Scholar] [CrossRef]
- Kim, P. MATLAB Deep Learning; Apress: Berkeley, CA, USA, 2017. [Google Scholar] [CrossRef]
- Ljung, L. System Identification Toolbox; Math Works: Natick, MA, USA, 1995. [Google Scholar]
Measurement | Model | Range | Precision |
---|---|---|---|
pH | Crison 5342T | [0–14] | 0.01 |
Medium temperature | Crison 5342T | [0–80] °C | 0.1 °C |
Dissolved oxygen | Mettler Toledo InPro 6050 | [30–Sat.] ppb | 30 ppb |
Medium level | Wenglor UMD402U035 | [0–30] cm | 0.1 mm |
injection | SMC PFM725S-C8-F | [0.5–25] L/min | 0.1 L/min |
Air injection | SMC PFMB7501-F04-F | [5–500] L/min | 1 L/min |
Ambient temperature | ONSET S-THB-M008 | [−40–75] | 0.21 °C |
Humidity | ONSET S-THB-M008 | [10–90] % | 0.1% |
Solar radiation | ONSET S-LIB-M003 | [0–1280] | 10 |
Variable | Maximum (Freshwater) | Minimum (Freshwater) | Maximum (Wastewater) | Minimum (Wastewater) |
---|---|---|---|---|
pH | 11.33 | 7.13 | 8.07 | 7.11 |
Medium level | 19.20 cm | 13.16 cm | 15.23 cm | 13.29 cm |
injection | 13.49 L/min | 0 L/min | 12.00 L/min | 0 L/min |
Solar radiation | 1080.94 W/ | 0 W/ | 1060.39 W/ | 0 W/ |
Variable | TDL |
---|---|
pH | (k−1):(k−2) |
Medium level | (k−1):(k−2) |
injection | (k−5):(k−6) |
Solar radiation | (k−1):(k−2) |
Hidden Layer Size | Freshwater Model | Wastewater Model | Number of Parameters |
---|---|---|---|
5 | 0.0208 | 0.0130 | 51 |
6 | 0.0341 | 0.0409 | 61 |
7 | 0.0195 | 0.0500 | 71 |
8 | 0.0429 | 0.0106 | 81 |
9 | 0.0367 | 0.0836 | 91 |
10 | 0.0291 | 0.0449 | 101 |
11 | 0.0404 | 0.0532 | 111 |
12 | 0.0417 | 0.0325 | 121 |
13 | 0.0384 | 0.0225 | 131 |
14 | 0.0383 | 0.0517 | 141 |
15 | 0.0192 | 0.0601 | 151 |
Freshwater Model | Wastewater Model | |
---|---|---|
Test Model Fit (%) | 71.34 | 73.75 |
General Model Fit (%) | 63.91 | 62.76 |
Test MSE | 0.0192 | 0.0106 |
[4-4-1] ARX Model Fit (%) | −19.43 | 10.64 |
[4-4-1] ARX MSE | 0.1531 | 0.0301 |
[8-8-1] ARX Model Fit (%) | −2.32 | −198.00 |
[8-8-1] ARX MSE | 0.1102 | 0.3406 |
Best-fit ARX Model Fit (%) | 41.76 | −60.26 |
Best-fit ARX MSE | 0.0357 | 0.0971 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otálora, P.; Guzmán, J.L.; Berenguel, M.; Acién, F.G. Data-Driven pH Model in Raceway Reactors for Freshwater and Wastewater Cultures. Mathematics 2023, 11, 1614. https://doi.org/10.3390/math11071614
Otálora P, Guzmán JL, Berenguel M, Acién FG. Data-Driven pH Model in Raceway Reactors for Freshwater and Wastewater Cultures. Mathematics. 2023; 11(7):1614. https://doi.org/10.3390/math11071614
Chicago/Turabian StyleOtálora, Pablo, José Luis Guzmán, Manuel Berenguel, and Francisco Gabriel Acién. 2023. "Data-Driven pH Model in Raceway Reactors for Freshwater and Wastewater Cultures" Mathematics 11, no. 7: 1614. https://doi.org/10.3390/math11071614
APA StyleOtálora, P., Guzmán, J. L., Berenguel, M., & Acién, F. G. (2023). Data-Driven pH Model in Raceway Reactors for Freshwater and Wastewater Cultures. Mathematics, 11(7), 1614. https://doi.org/10.3390/math11071614