A Novel Link Prediction Method for Social Multiplex Networks Based on Deep Learning
Abstract
:1. Introduction
- We formulate the task of designing a monolayer link prediction framework with the help of multiplex network information. It is beneficial for transferring various types of node information across multiple networks.
- Our method can absorb three types of information, including structural features, semantic features and node attributes, and we use an attention mechanism to fuse information from different layers.
- We construct two kinds of datasets to test our model performance on the task of supporting domain adaptation and conduct experiments on LPSMN and other baselines with these datasets. Moreover, the performance among synthetic different heterogeneity is explored. The result indicates that our model has a leading performance in this task.
2. Preliminaries
2.1. Definition
2.2. Problem Statement
3. Methodology
3.1. Graph Structure Features
3.2. Latent Features and Explicit Features
3.3. Link Prediction in Social Multiplex Networks
Algorithm 1 Link Prediction for Social Multiplex Networks |
Require: External layer graph , Validation layer graph , Prediction layer graph , Embedding dimension C Ensure: Link labels Label
|
4. Experiments
4.1. Datasets
4.1.1. Synthetic Networks
4.1.2. Real-World Networks
4.2. Baseline
4.3. Metrics
4.4. Experiment Analysis
4.4.1. Comparison to Heuristic Methods
4.4.2. Comparison to Latent Feature Methods
4.4.3. Ablation Study
4.4.4. Complexity Analysis
4.4.5. Impact of Network Heterogeneity
4.4.6. Sensitivity Analysis
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Daud, N.N.; Ab Hamid, S.H.; Saadoon, M.; Sahran, F.; Anuar, N.B. Applications of link prediction in social networks: A review. J. Netw. Comput. Appl. 2020, 166, 102716. [Google Scholar] [CrossRef]
- Tang, C.F.; Rao, Y.; Yu, H.L.; Sun, L.; Cheng, J.M.; Wang, Y.T. Improving Knowledge Graph Completion Using Soft Rules and Adversarial Learning. Chin. J. Electron. 2021, 30, 623–633. [Google Scholar]
- Barabási, A.L. Network science. Philos. Trans. R. Soc. A 2013, 371, 20120375. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.; Zaki, M. A survey of link prediction in social networks. In Social Network Data Analytics, 1st ed.; Aggarwal, C.C., Ed.; Springer US: Boston, MA, USA, 2011; pp. 243–275. [Google Scholar]
- Davis, D.; Lichtenwalter, R.; Chawla, N.V. Multi-relational link prediction in heterogeneous information networks. In Proceedings of the International Conference on Advances in Social Networks Analysis and Mining, Kaohsiung, Taiwan, 25 July 2011; pp. 281–288. [Google Scholar]
- Ma, J.L.; Sun, Z.C.; Zhang, Y.Q. Enhancing traffic capacity of multilayer networks with two logical layers by link deletion. IET Control Theory Appl. 2022, 16, 1–6. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, Y. Link prediction based on graph neural networks. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montreal, Canada, 3 December 2018; pp. 5171–5181. [Google Scholar]
- Yu, C.; Zhao, X.; An, L.; Lin, X. Similarity-based link prediction in social networks: A path and node combined approach. J. Inf. Sci. 2017, 43, 683–695. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, S.S.; Singh, K.; Biswas, B. Link prediction techniques, applications, and performance: A survey. Physica A 2020, 553, 124289. [Google Scholar] [CrossRef]
- Roweis, S.T.; Saul, L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290, 2323–2326. [Google Scholar] [CrossRef] [Green Version]
- Adamic, L.A.; Adar, E. Friends and neighbors on the web. Soc. Netw. 2003, 25, 211–230. [Google Scholar] [CrossRef] [Green Version]
- Jaccard, P. Etude de la distribution florale dans une portion des alpes et du jura. Bull. Soc. Vaudoise Sci. Nat. 1901, 37, 547–579. [Google Scholar]
- Jalili, M.; Orouskhani, Y.; Asgari, M.; Alipourfard, N.; Perc, M. Link prediction in multiplex online social networks. R. Soc. Open Sci. 2017, 4, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Perozzi, B.; Al-Rfou, R.; Skiena, S. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24 August 2014; pp. 701–710. [Google Scholar]
- Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; Mei, Q.Z. Line: Large-scale information network embedding. In Proceedings of the 24th International Conference on World Wide Web, Florence, Italy, 18 May 2015; pp. 1067–1077. [Google Scholar]
- Grover, A.; Leskovec, J. Node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 6 August 2016; pp. 855–864. [Google Scholar]
- Fu, S.C.; Liu, W.F.; Li, S.Y. Two-order graph convolutional networks for semi-supervised classification. IET Image Process. 2019, 13, 2763–2771. [Google Scholar]
- Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural message passing for quantum chemistry. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6 August 2017; pp. 1263–1272. [Google Scholar]
- Zhang, M.; Cui, Z.; Neumann, M.; Chen, Y.X. An end-to-end deep learning architecture for graph classification. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2 February 2018; pp. 383–391. [Google Scholar]
- Ai, B.; Qin, Z.; Shen, W.; Li, Y. Structure enhanced graph neural networks for link prediction. arXiv 2022, arXiv:2201.05293. [Google Scholar]
- Shan, N.; Li, L.; Zhang, Y.; Bai, S.S.; Chen, X.Y. Supervised link prediction in multiplex networks. Knowl.-Based Syst. 2020, 203, 106168. [Google Scholar] [CrossRef]
- Chen, L.; Qiao, S.J.; Han, N.; Yuan, C.A.; Song, X.; Huang, P.; Xiao, Y. Friendship prediction model based on factor graphs integrating geographical location. CAAI Trans. Intell. Technol. 2020, 5, 193–199. [Google Scholar] [CrossRef]
- Tang, R.; Jiang, S.; Chen, X.; Wang, H.Z.; Wang, W.X.; Wang, W. Interlayer link prediction in multiplex social networks: An iterative degree penalty algorithm. Knowl.-Based Syst. 2020, 194, 105598. [Google Scholar] [CrossRef] [Green Version]
- Nasiri, E.; Berahm, K.; Li, Y. A new link prediction in multiplex networks using topologically biased random walks. Chaos Soliton. Fract. 2021, 151, 111230. [Google Scholar] [CrossRef]
- Malhotra, D.; Goyal, R. Supervised-learning link prediction in single layer and multiplex networks. Mach. Learn. Appl. 2021, 6, 100086. [Google Scholar] [CrossRef]
- Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How powerful are graph neural networks? arXiv 2018, arXiv:1810.00826. [Google Scholar]
- Shervashidze, N.; Schweitzer, P.; van Leeuwen, E.J.; Mehlhorn, K.; Borgwardt, K.M. Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 2011, 12, 2539–2561. [Google Scholar]
- Cai, H.; Zheng, V.W.; Chang, K.C.C. A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 2018, 30, 1616–1637. [Google Scholar] [CrossRef] [Green Version]
- Goyal, P.; Ferrara, E. Graph embedding techniques, applications, and performance: A survey. Knowl.-Based Syst. 2018, 151, 78–94. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, D.R.; Ribeiro, L.F.R.; Saverese, P.H.P. struc2vec: Learning node representations from structural identity. arXiv 2017, arXiv:1704.03165. [Google Scholar]
- Nickel, M.; Jiang, X.; Tresp, V. Reducing the rank in relational factorization models by including observable patterns. In Proceedings of the 27th International Conference on Neural Information Processing Systems, Cambridge, MA, USA, 8 December 2014; pp. 1179–1187. [Google Scholar]
- Zhao, H.; Du, L.; Buntine, W. Leveraging node attributes for incomplete relational data. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6 August 2017; pp. 4072–4081. [Google Scholar]
- Cao, X.Z.; Yu, Y. BASS: A Bootstrapping Approach for Aligning Heterogenous Social Networks. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Riva del Garda, Italy, 19 September 2016; pp. 459–475. [Google Scholar]
- Price, D.D.S. A general theory of bibliometric and other cumulative advantage processes. J. Am. Soc. Inf. Sci. 1976, 27, 510–515. [Google Scholar] [CrossRef] [Green Version]
- Liang, B.; Wang, X.; Wang, L. Impact of heterogeneity on network embedding. IEEE Trans. Netw. Sci. Eng. 2022, 9, 1296–1307. [Google Scholar] [CrossRef]
- Lü, L.; Zhou, T. Link prediction in complex networks: A survey. Physica A 2011, 390, 1150–1170. [Google Scholar] [CrossRef] [Green Version]
- Ravasz, E.; Somera, A.L.; Mongru, D.A.; Oltvai, Z.N.; Barabási, A.L. Hierarchical organization of modularity in metabolic networks. Science 2002, 297, 1551–1555. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Lü, L.; Zhang, Y.C. Predicting missing links via local information. Eur. Phys. J. B 2009, 71, 623–630. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.B.; Zhou, T.; Wang, B.H. Scale-free networks without growth. Physica A 2008, 387, 1683–1688. [Google Scholar] [CrossRef] [Green Version]
- Barabási, A.L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [Green Version]
- Ou, Q.; Jin, Y.D.; Zhou, T.; Wang, B.H.; Yin, B.Q. Power-law strength degree correlation from resource-allocation dynamics on weighted networks. Phys. Rev. E 2007, 75, 021102. [Google Scholar] [CrossRef] [Green Version]
- Lü, L.; Jin, C.H.; Zhou, T. Similarity index based on local paths for link prediction of complex networks. Phys. Rev. E 2009, 80, 046122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katz, L. A new status index derived from sociometric analysis. Psychometrika 1953, 18, 39–43. [Google Scholar] [CrossRef]
Multiplex Network | Layer | #Nodes | #Edges |
---|---|---|---|
SF ( = 2.1) | the first layer | 2000 | 38,080 |
the second layer | 2000 | 28,080 | |
the third layer | 2000 | 23,080 | |
SF ( = 2.5) | the first layer | 2000 | 38,080 |
the second layer | 2000 | 28,080 | |
the third layer | 2000 | 23,080 | |
SF ( = 3) | the first layer | 2000 | 38,080 |
the second layer | 2000 | 28,080 | |
the third layer | 2000 | 23,080 | |
SF ( = 5) | the first layer | 2000 | 38,080 |
the second layer | 2000 | 28,080 | |
the third layer | 2000 | 23,080 | |
SF ( = 10) | the first layer | 2000 | 38,080 |
the second layer | 2000 | 28,080 | |
the third layer | 2000 | 23,080 | |
WD | the first layer | 5000 | 200,192 |
the second layer | 5000 | 17,013 | |
the third layer | 5000 | 14,613 | |
FT | the first layer | 5000 | 52,139 |
the second layer | 5000 | 897 | |
the third layer | 5000 | 165 |
Multiplex Network | CN | Jaccard | HPI | HDI | PA | AA | RA | LP | Katz | |
---|---|---|---|---|---|---|---|---|---|---|
SF ( = 2.1) | 0.5376 | 0.5298 | 0.5328 | 0.5293 | 0.6089 | 0.5370 | 0.5356 | 0.6036 | 0.5859 | |
SF ( = 2.5) | 0.5241 | 0.5181 | 0.5197 | 0.5191 | 0.5936 | 0.5229 | 0.5228 | 0.5898 | 0.5683 | |
SF ( = 3) | 0.5142 | 0.5114 | 0.5126 | 0.5117 | 0.5804 | 0.5144 | 0.5142 | 0.5838 | 0.5569 | |
SF ( = 5) | 0.5151 | 0.5126 | 0.5129 | 0.5131 | 0.5699 | 0.5143 | 0.5144 | 0.5684 | 0.5524 | |
SF ( = 10) | 0.5111 | 0.5089 | 0.5084 | 0.5093 | 0.5606 | 0.5102 | 0.5095 | 0.5642 | 0.5439 | |
WD | 0.7490 | 0.7291 | 0.5765 | 0.7291 | 0.7497 | 0.7500 | 0.8457 | 0.8567 | 0.8232 | |
FT (on validation layer) | 0.5513 | 0.5455 | 0.4727 | 0.5448 | 0.2365 | 0.5509 | 0.5508 | 0.4676 | 0.4114 | |
FT (on external layer) | 0.6121 | 0.6059 | 0.5139 | 0.6060 | 0.7385 | 0.6128 | 0.6139 | 0.7427 | 0.7447 |
Multiplex Network | DW | LINE | N2V | S2V | LPSMN |
---|---|---|---|---|---|
SF ( = 2.1) | 0.5685 | 0.7732 | 0.8977 | 0.7240 | |
SF ( = 2.5) | 0.5615 | 0.7673 | 0.9072 | 0.7203 | |
SF ( = 3) | 0.5757 | 0.7630 | 0.9090 | 0.7176 | |
SF ( = 5) | 0.5709 | 0.7665 | 0.9123 | 0.7211 | |
SF ( = 10) | 0.5628 | 0.7620 | 0.9076 | 0.7119 | |
WD | 0.6512 | 0.8091 | 0.9765 | 0.8120 | |
FT | 0.5654 | 0.6617 | 0.9981 | 0.6120 |
Multiplex Network | LPSMN | ||||
---|---|---|---|---|---|
SF ( = 2.1) | 0.7282 | 0.5309 | 0.5109 | 0.9153 | |
SF ( = 2.5) | 0.7807 | 0.5218 | 0.502 | 0.915 | |
SF ( = 3) | 0.7352 | 0.5353 | 0.509 | 0.9172 | |
SF ( = 5) | 0.6921 | 0.5111 | 0.5038 | 0.9213 | |
SF ( = 10) | 0.7584 | 0.5056 | 0.5031 | 0.9343 | |
WD | 0.9757 | 0.9189 | 0.7214 | 0.9966 | |
FT | 0.9849 | 0.9487 | 0.623 | 0.9974 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, J.; Lei, T.; Li, J.; Jiang, J. A Novel Link Prediction Method for Social Multiplex Networks Based on Deep Learning. Mathematics 2023, 11, 1705. https://doi.org/10.3390/math11071705
Cao J, Lei T, Li J, Jiang J. A Novel Link Prediction Method for Social Multiplex Networks Based on Deep Learning. Mathematics. 2023; 11(7):1705. https://doi.org/10.3390/math11071705
Chicago/Turabian StyleCao, Jiaping, Tianyang Lei, Jichao Li, and Jiang Jiang. 2023. "A Novel Link Prediction Method for Social Multiplex Networks Based on Deep Learning" Mathematics 11, no. 7: 1705. https://doi.org/10.3390/math11071705
APA StyleCao, J., Lei, T., Li, J., & Jiang, J. (2023). A Novel Link Prediction Method for Social Multiplex Networks Based on Deep Learning. Mathematics, 11(7), 1705. https://doi.org/10.3390/math11071705