Minimal Rank Properties of Outer Inverses with Prescribed Range and Null Space
Abstract
:1. Introduction
- A weak Drazin inverse of A when
- A minimal rank weak Drazin inverse of A when
- A commuting weak Drazin inverse of A when
2. Motivation and Research Highlights
- (1)
- For , and , the first problem we consider is to find equivalent conditions for solvability of the constrained systemWe will prove that X is a solution to (5) if and only if (iff) .
- (2)
- In the case that system (5) is consistent, we solve the minimization model
- (3)
- We investigate solvability of system (5) with the additional assumptions. Precisely, we add an additional constraint or or . A minimal rank outer inverse X with prescribed range which commutes with A, will be called a commuting minimal rank outer inverse with prescribed range .
- (4)
- Suppose that , and . We study the solvability of the system
- (5)
- If the system (7) is consistent, the minimization problem
- (6)
- Special cases of the system (7) will be the topic of this research. A minimal rank outer inverse X with prescribed kernel which commutes with A, will be called a commuting minimal rank outer inverse with prescribed kernel .
- (7)
- Characterizations for the Drazin inverse, group and the Moore–Penrose inverse are obtained applying our results.
- (8)
3. Minimal Rank Outer Inverses with Prescribed Range
- (a)
- The subsequent statements are mutually equivalent:
- (i)
- and ;
- (ii)
- and ;
- (iii)
- X is a solution to (2), i.e., ;
- (iv)
- and ;
- (v)
- , and .
- (b)
- Additionally,
- (i)
- and ;
- (ii)
- and ;
- (iii)
- ;
- (iv)
- and ;
- (v)
- , and ;
- (vi)
- X is a minimal rank weak Drazin inverse of A.
- (a)
- The subsequent statements are mutually equivalent:
- (i)
- and ;
- (ii)
- , and ;
- (iii)
- , and ;
- (iv)
- , and ;
- (v)
- , and , i.e., .
- (b)
- In addition,
- (i)
- , and ;
- (ii)
- , and ;
- (iii)
- and ;
- (iv)
- , and .
- (i)
- , and ;
- (ii)
- , and ;
- (iii)
- and ;
- (iv)
- , and ;
- (v)
- .
- (i)
- and ;
- (ii)
- , and ;
- (iii)
- , and ;
- (iv)
- , and ;
- (v)
- and ;
- (vi)
- , and ;
- (vii)
- , and , i.e., ;
- (viii)
- , and ;
- (ix)
- , and .
- (i)
- and ;
- (ii)
- , and ;
- (iii)
- , and ;
- (iv)
- , and ;
- (v)
- and ;
- (vi)
- , and ;
- (vii)
- , , , i.e., ;
- (viii)
- , and ;
- (ix)
- , and .
- (i)
- and ;
- (ii)
- , and ;
- (iii)
- , and ;
- (iv)
- , and ;
- (v)
- and ;
- (vi)
- , and ;
- (vii)
- , , , i.e., ;
- (viii)
- , and ;
- (ix)
- , and .
- (i)
- and ;
- (ii)
- , and ;
- (iii)
- , and ;
- (iv)
- , and ;
- (v)
- and ;
- (vi)
- , and ;
- (vii)
- , and , i.e.,;
- (viii)
- , and ;
- (ix)
- , and .
4. Minimal Rank Outer Inverses with Prescribed Kernel
- (a)
- The subsequent statements are mutually equivalent:
- (i)
- and ;
- (ii)
- and ;
- (iii)
- (iv)
- and ;
- (v)
- , and .
- (b)
- In addition,
- (i)
- and ;
- (ii)
- and ;
- (iii)
- ;
- (iv)
- and ;
- (v)
- , and ;
- (vi)
- X is a minimal rank weak Drazin inverse of A.
- (a)
- The subsequent statements are mutually equivalent:
- (i)
- and ;
- (ii)
- , and ;
- (iii)
- , and ;
- (iv)
- , and ;
- (v)
- , and , i.e., .
- (b)
- In addition,
- (i)
- , and ;
- (ii)
- , and ;
- (iii)
- and ;
- (iv)
- , and .
- (i)
- , and ;
- (ii)
- , and ;
- (iii)
- and ;
- (iv)
- , and ;
- (v)
- .
- (i)
- and ;
- (ii)
- , and ;
- (iii)
- , and ;
- (iv)
- , and ;
- (v)
- and ;
- (vi)
- , and ;
- (vii)
- , and , i.e., ;
- (viii)
- , and ;
- (ix)
- and .
- (i)
- , and ;
- (ii)
- , and ;
- (iii)
- , and ;
- (iv)
- and ;
- (v)
- , and ;
- (vi)
- , , , i.e., ;
- (vii)
- , and ;
- (viii)
- , and .
- (i)
- , and ;
- (ii)
- , and ;
- (iii)
- , and ;
- (iv)
- and ;
- (v)
- , and ;
- (vi)
- , and , i.e., ;
- (vii)
- , and ;
- (viii)
- , and .
- (i)
- , and ;
- (ii)
- , and ;
- (iii)
- , and ;
- (iv)
- and ;
- (v)
- , and ;
- (vi)
- , and , i.e., ;
- (vii)
- , and ;
- (viii)
- , and .
5. Minimal Rank Outer Inverses with Prescribed Range and Kernel
- (a)
- The subsequent constrained matrix equations are mutually equivalent:
- (i)
- , and ;
- (ii)
- , , and ;
- (iii)
- (iv)
- , and ;
- (v)
- , , and .
- (b)
- In addition, the system (9) has the unique solution .
- (i)
- , and ;
- (ii)
- , , , and ;
- (iii)
- , , , and ;
- (iv)
- , , and ;
- (v)
- , , and , i.e., .
- (b)
- In addition, the constrained system in (i) has the unique solution .
- (i)
- , , and ;
- (ii)
- , , and ;
- (iii)
- , and ;
- (iv)
- , , and .
6. Conclusions
- -
- -
- -
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Penrose, R. A generalized inverse for matrices. Proc. Cambridge Philos. Soc. 1955, 51, 406–413. [Google Scholar] [CrossRef] [Green Version]
- Getson, A.J.; Hsuan, F.C. {2}-Inverses and Their Statistical Applications; Lecture Notes in Statistics 47; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Rao, C.R. A note on a generalized inverse of a matrix with applications to problems in mathematical statistics. J. R. Soc. Ser. B 1962, 24, 152–158. [Google Scholar] [CrossRef]
- Ben-Israel, A.; Greville, T.N.E. Generalized Inverses: Theory and Applications, 2nd ed.; Springer: New York, NY, USA, 2003. [Google Scholar]
- Nashed, M.Z. Generalized Inverse and Applications; Academic Press: New York, NY, USA, 1976. [Google Scholar]
- Wei, Y. A characterization and representation of the generalized inverse and its applications. Linear Algebra Appl. 1998, 280, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Wu, H. The representation and approximation for the generalized inverse . Appl. Math. Comput. 2003, 135, 263–276. [Google Scholar] [CrossRef]
- Yang, H.; Liu, D. The representation of generalized inverse and its applications. J. Comput. Appl. Math. 2009, 224, 204–209. [Google Scholar] [CrossRef] [Green Version]
- Zheng, B.; Wang, G. Representation and approximation for generalized inverse : Revisited. Appl. Math. Comput. 2006, 22, 225–240. [Google Scholar]
- Cao, C.G.; Zhang, X. The generalized inverse and its applications. J. Appl. Math. Comput. 2003, 11, 155–164. [Google Scholar] [CrossRef]
- Wang, G.R.; Wei, Y.; Qiao, S. Generalized Inverses: Theory and Computations; Science Press: Beijing, China; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Wei, Y.; Stanimirović, P.S.; Petković, M. Numerical and Symbolic Computations of Generalized Inverses; World Scientific: Singapore, 2018. [Google Scholar]
- Sheng, X.; Chen, G. Full-rank representation of generalized inverse and its applications. Comput. Math. Appl. 2007, 54, 1422–1430. [Google Scholar] [CrossRef] [Green Version]
- Sheng, X.; Chen, G.L.; Gong, Y. The representation and computation of generalized inverse . J. Comput. Appl. Math. 2008, 213, 248–257. [Google Scholar] [CrossRef] [Green Version]
- Stanimirović, P.S.; Ćirić, M.; Stojanović, I.; Gerontitis, D. Conditions for existence, representations and computation of matrix generalized inverses. Complexity 2017, 2017, 6429725. [Google Scholar] [CrossRef] [Green Version]
- Stanimirović, P.S.; Ćirić, M.; Lastra, A.; Sendra, J.R.; Sendra, J. Representations and symbolic computation of generalized inverses over fields. Appl. Math. Comput. 2021, 406, 126287. [Google Scholar] [CrossRef]
- Stanimirović, P.S.; Ćirić, M.; Lastra, A.; Sendra, J.R.; Sendra, J. Representations and geometrical properties of generalized inverses over fields. Linear Multilinear Algebra. [CrossRef]
- Stanimirović, P.S.; Soleymani, F.; Haghani, F.K. Computing outer inverses by scaled matrix iterations. J. Comput. Appl. Math. 2016, 296, 89–101. [Google Scholar] [CrossRef]
- Ma, X.; Nashine, H.K.; Shi, S.; Soleymani, F. Exploiting higher computational efficiency index for computing outer generalized inverses. Appl. Numer. Math. 2022, 175, 18–28. [Google Scholar] [CrossRef]
- Kansal, M.; Kumar, S.; Kaur, M. An efficient matrix iteration family for finding the generalized outer inverse. Appl. Math. Comput. 2022, 430, 127292. [Google Scholar] [CrossRef]
- Petković, M.; Krstić, M.A.; Rajković, K.P. Rapid generalized Schultz iterative methods for the computation of outer inverses. J. Comput. Appl. Math. 2018, 344, 572–584. [Google Scholar] [CrossRef]
- Cordero, A.; Soto-Quiros, P.; Torregrosa, J.R. A general class of arbitrary order iterative methods for computing generalized inverses. Appl. Math. Comput. 2021, 409, 126381. [Google Scholar] [CrossRef]
- Dehghan, M.; Shirilord, A. A fast computational algorithm for computing outer pseudo-inverses with numerical experiments. J. Comput. Appl. Math. 2022, 408, 114128. [Google Scholar] [CrossRef]
- Campbell, S.L.; Meyer, C.D., Jr. Generalized Inverses of Linear Transformations; Dover Publications, Inc.: New York, NY, USA, 1991; Corrected Reprint of the 1979 Original; SIAM: Philadelphia, PA, USA, 2008. [Google Scholar]
- Levine, J.; Hartwig, R.E. Applications of Drazin inverse to the Hill cryptographic systems. Cryptologia 1980, 1558–1586, 71–85. [Google Scholar] [CrossRef]
- Prasad, K.M.; Mohana, K.S. Core-EP inverse. Linear Multilinear Algebra 2014, 62, 792–802. [Google Scholar] [CrossRef]
- Baksalary, O.M.; Trenkler, G. Core inverse of matrices. Linear Multilinear Algebra 2010, 58, 681–697. [Google Scholar] [CrossRef]
- Malik, S.B.; Thome, N. On a new generalized inverse for matrices of an arbitrary index. Appl. Math. Comput. 2014, 226, 575–580. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, J.; Zhou, M. m-weak group inverses in a ring with involution. RACSAM 2021, 115, 2. [Google Scholar] [CrossRef]
- Wang, H.; Chen, J. Weak group inverse. Open Math. 2018, 16, 1218–1232. [Google Scholar] [CrossRef]
- Ferreyra, D.E.; Malik, S.B. A generalization of the group inverse. Quaest. Math 2023. [Google Scholar] [CrossRef]
- Campbell, S.L.; Meyer, C.D. Weak Drazin inverses. Linear Algebra Appl. 1978, 20, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Chen, J. Minimal rank weak Drazin inverses: A class of outer inverses with prescribed range. Electron. Linear Algebra 2023, 39, 1–16. [Google Scholar] [CrossRef]
- Mosić, D.; Stanimirović, P.S. Existence and Representation of Solutions to Some Constrained Systems of Matrix Equations. In Matrix and Operator Equations and Applications; Book Series: Mathematics Online First Collections; Moslehian, M.S., Ed.; Springer: Cham, Switzerland, 2023; Available online: https://link.springer.com/book/9783031253850 (accessed on 1 January 2023).
- Deng, C. On the solutions of operator equation CAX = C = XAC. J. Math. Anal. Appl. 2013, 398, 664–670. [Google Scholar] [CrossRef]
- Urquhart, N.S. Computation of generalized inverse matrtices which satisfy specified conditions. SIAM Rev. 1968, 10, 216–218. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosić, D.; Stanimirović, P.S.; Mourtas, S.D. Minimal Rank Properties of Outer Inverses with Prescribed Range and Null Space. Mathematics 2023, 11, 1732. https://doi.org/10.3390/math11071732
Mosić D, Stanimirović PS, Mourtas SD. Minimal Rank Properties of Outer Inverses with Prescribed Range and Null Space. Mathematics. 2023; 11(7):1732. https://doi.org/10.3390/math11071732
Chicago/Turabian StyleMosić, Dijana, Predrag S. Stanimirović, and Spyridon D. Mourtas. 2023. "Minimal Rank Properties of Outer Inverses with Prescribed Range and Null Space" Mathematics 11, no. 7: 1732. https://doi.org/10.3390/math11071732
APA StyleMosić, D., Stanimirović, P. S., & Mourtas, S. D. (2023). Minimal Rank Properties of Outer Inverses with Prescribed Range and Null Space. Mathematics, 11(7), 1732. https://doi.org/10.3390/math11071732