A Comparative Study of the Fractional-Order Belousov–Zhabotinsky System
Abstract
:1. Introduction
2. Preliminaries
- 1.
- 2.
- 3.
3. General Implementation of the Suggested Methods
3.1. Laplace Residual Power Series Method (LRPSM)
3.2. General Application of NIM
4. Appropriate Algorithmic Approach
- 1.
- The operator is uniformly elliptic and has smooth coefficients.
- 2.
- The initial condition is bounded and measurable.
- 3.
- The function is continuous and locally bounded in .
- 4.
- The solution of (27) satisfies the following estimate:where is a nonnegative and increasing function.
5. Applications
5.1. Implementation of the LRPSM
5.2. Implementation of NIM
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Baleanu, D.; Guvenc, Z.B.; Tenreiro Machado, J.A. New Trends in Nanotechnology and Fractional Calculus Applications; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; New York, NY, USA, 2010. [Google Scholar]
- Abdeljawad, T.; Amin, R.; Shah, K.; Al-Mdallal, Q.; Jarad, F. Efficient sustainable algorithm for numerical solutions of systems of fractional order differential equations by Haar wavelet collocation method. Alex. Eng. J. 2020, 59, 2391–2400. [Google Scholar] [CrossRef]
- Amin, R.; Shah, K.; Asif, M.; Khan, I. A computational algorithm for the numerical solution of fractional order delay differential equations. Appl. Math. Comput. 2021, 402, 125863. [Google Scholar] [CrossRef]
- Qu, H.; Liu, X.; She, Z. Neural network method for fractional-order partial differential equations. Neurocomputing 2020, 414, 225–237. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to Fractional Calculus and Fractional Differential Equations; A Wiley: New York, NY, USA, 1993. [Google Scholar]
- Li, Y.; Liu, F.; Turner, I.W.; Li, T. Time-fractional diffusion equation for signal smoothing. Appl. Math. Comput. 2018, 326, 108–116. [Google Scholar] [CrossRef] [Green Version]
- Hadian Rasanan, A.H.; Bajalan, N.; Par, K.; Rad, J.A. Simulation of nonlinear fractional dynamics arising in the modeling of cognitive decision making using a new fractional neural network. Math. Methods Appl. Sci. 2020, 43, 1437–1466. [Google Scholar] [CrossRef]
- El-Tantawy, S.A.; El-Sherif, L.S.; Bakry, A.M.; Alhejaili, W.; Wazwaz, A.M. On the analytical approximations to the nonplanar damped Kawahara equation: Cnoidal and solitary waves and their energy. Phys. Fluids 2022, 34, 113103. [Google Scholar] [CrossRef]
- Alharthi, M.R.; Alharbey, R.A.; El-Tantawy, S.A. Novel analytical approximations to the nonplanar Kawahara equation and its plasma applications. Eur. Phys. J. Plus 2022, 137, 1172. [Google Scholar] [CrossRef]
- El-Tantawy, S.A.; Salas, A.H.; Alyousef, H.A.; Alharthi, M.R. Novel approximations to a nonplanar nonlinear Schrodinger equation and modeling nonplanar rogue waves/breathers in a complex plasma. Chaos Solitons Fractals 2022, 163, 112612. [Google Scholar] [CrossRef]
- Alyousef, H.A.; Salas, A.H.; Matoog, R.T.; El-Tantawy, S.A. On the analytical and numerical approximations to the forced damped Gardner Kawahara equation and modeling the nonlinear structures in a collisional plasma. Phys. Fluids 2022, 34, 103105. [Google Scholar] [CrossRef]
- El-Tantawy, S.A.; Salas, A.H.; Alyousef, H.A.; Alharthi, M.R. Novel exact and approximate solutions to the family of the forced damped Kawahara equation and modeling strong nonlinear waves in a plasma. Chin. J. Phys. 2022, 77, 2454–2471. [Google Scholar] [CrossRef]
- El-Tantawy, S.A.; Alharbey, R.A.; Salas, A.H. Novel approximate analytical and numerical cylindrical rogue wave and breathers solutions: An application to electronegative plasma. Chaos Solitons Fractals 2022, 155, 111776. [Google Scholar] [CrossRef]
- Albalawi, W.; El-Tantawy, S.A.; Alkhateeb, S.A. The phase shift analysis of the colliding dissipative KdV solitons. J. Ocean Eng. Sci. 2022, 7, 521–527. [Google Scholar] [CrossRef]
- El-Tantawy, S.A.; Salas, A.H.; Albalawi, W. New localized and periodic solutions to a Korteweg—De Vries equation with power law nonlinearity: Applications to some plasma models. Symmetry 2022, 14, 197. [Google Scholar] [CrossRef]
- Kashkari, B.S.; El-Tantawy, S.A.; Salas, A.H.; El-Sherif, L.S. Homotopy perturbation method for studying dissipative nonplanar solitons in an electronegative complex plasma. Chaos Solitons Fractals 2020, 130, 109457. [Google Scholar] [CrossRef]
- Khattak, M.Y.; Masood, W.; Jahangir, R.; Siddiq, M.; Alyousef, H.A.; El-Tantawy, S.A. Interaction of ion-acoustic solitons for multi-dimensional Zakharov Kuznetsov equation in Van Allen radiation belts. Chaos Solitons Fractals 2022, 161, 112265. [Google Scholar] [CrossRef]
- Veeresha, P.; Prakasha, D.G.; Baskonus, H.M. Solving smoking epidemic model of fractional order using a modified homotopy analysis transform method. Math. Sci. 2019, 13, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Prakasha, D.G.; Veeresha, P.; Baskonus, H.M. Analysis of the dynamics of hepatitis E virus using the Atangana-Baleanu fractional derivative. Eur. Phys. J. Plus 2019, 134, 241. [Google Scholar] [CrossRef]
- Nasrolahpour, H. A note on fractional electrodynamics. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 2589–2593. [Google Scholar] [CrossRef]
- Li, X.; Dong, Z.; Wang, L.; Niu, X.; Yamaguchi, H.; Li, D.; Zhang, W.; Yu, P. A magnetic field coupling fractional step lattice Boltzmann model for the complex interfacial behavior in magnetic multiphase flows. Appl. Math. Modell. 2023, 117, 219–250. [Google Scholar] [CrossRef]
- Luo, C.; Wang, L.; Xie, Y.; Chen, B. A New Conjugate Gradient Method for Moving Force Identification of Vehicle-Bridge System. J. Vib. Eng. Technol. 2023. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Zhang, Z.; Postolache, O.; Mi, C. A vision-based container position measuring system for ARMG. Meas. Control 2022. [Google Scholar] [CrossRef]
- Mi, C.; Huang, S.; Zhang, Y.; Zhang, Z.; Postolache, O. Design and Implementation of 3-D Measurement Method for Container Handling Target. J. Mar. Sci. Eng. 2022, 10, 1961. [Google Scholar] [CrossRef]
- Hu, J.; Wu, Y.; Li, T.; Ghosh, B.K. Consensus Control of General Linear Multiagent Systems With Antagonistic Interactions and Communication Noises. IEEE Trans. Autom. Control 2019, 64, 2122–2127. [Google Scholar] [CrossRef]
- Akinyemi, L.; Nisar, K.S.; Saleel, C.A.; Rezazadeh, H.; Veeresha, P.; Khater, M.M.; Inc, M. Novel approach to the analysis of fifth-order weakly nonlocal fractional Schrodinger equation with Caputo derivative. Results Phys. 2021, 31, 104958. [Google Scholar] [CrossRef]
- Akinyemi, L. A fractional analysis of Noyes-Field model for the nonlinear Belousov-Zhabotinsky reaction. Comput. Appl. Math. 2020, 39, 175. [Google Scholar] [CrossRef]
- Ntiamoah, D.; Ofori-Atta, W.; Akinyemi, L. The higher-order modified Korteweg-de Vries equation: Its soliton, breather and approximate solutions. J. Ocean. Eng. Sci. 2022, in press. [Google Scholar] [CrossRef]
- Baleanu, D.; Wu, G.C.; Zeng, S.D. Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations. Chaos Solitons Fractals 2017, 102, 99–105. [Google Scholar] [CrossRef]
- Scalas, E.; Gorenflo, R.; Mainardi, F. Fractional calculus and continuous-time finance. Phys. A 2000, 284, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Drapaka, C.S.; Sivaloganathan, S. A fractional model of continuum mechanics. J. Elst. 2012, 107, 105–123. [Google Scholar] [CrossRef]
- Cruz–Duarte, J.M.; Rosales–Garcia, J.; Correa–Cely, C.R.; Garcia–Perez, A.; Avina–Cervantes, J.G. A closed form expression for the Gaussian-based Caputo-Fabrizio fractional derivative for signal processing applications. Commun. Nonlinear Sci. Numer. Simul. 2018, 61, 138–148. [Google Scholar] [CrossRef]
- Singh, B.K. A novel approach for numeric study of 2D biological population model. Cogent Math. 2016, 3, 1261527. [Google Scholar] [CrossRef]
- Momani, S.; Odibat, Z. Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method. Appl. Math. Comput. 2006, 177, 488–494. [Google Scholar] [CrossRef]
- Keskin, Y.; Oturanc, G. Reduced differential transform method for partial differential equations. Int. J. Nonlinear Sci. Numer. Simul. 2009, 10, 741–750. [Google Scholar] [CrossRef]
- Wu, G.C. A fractional variational iteration method for solving fractional nonlinear differential equations. Comput. Math. Appl. 2011, 61, 2186–2190. [Google Scholar] [CrossRef] [Green Version]
- Kbiri Alaoui, M.; Nonlaopon, K.; Zidan, A.M.; Khan, A.; Shah, R. Analytical investigation of fractional-order cahn-hilliard and gardner equations using two novel techniques. Mathematics 2022, 10, 1643. [Google Scholar] [CrossRef]
- Shah, N.A.; Hamed, Y.S.; Abualnaja, K.M.; Chung, J.D.; Khan, A. A comparative analysis of fractional-order kaup-kupershmidt equation within different operators. Symmetry 2022, 14, 986. [Google Scholar] [CrossRef]
- Alqhtani, M.; Saad, K.M.; Weera, W.; Hamanah, W.M. Analysis of the fractional-order local poisson equation in fractal porous media. Symmetry 2022, 14, 1323. [Google Scholar] [CrossRef]
- Prakasha, D.G.; Veeresha, P.; Rawashdeh, M.S. Numerical solution for (2+1)-dimensional time-fractional coupled Burger equations using fractional natural decomposition method. Math. Methods Appl. Sci. 2019, 42, 3409–3427. [Google Scholar] [CrossRef]
- Aljahdaly, N.H.; Naeem, M.; Arefin, M.A. A Comparative Analysis of Fractional Space-Time Advection-Dispersion Equation via Semi-Analytical Methods. J. Funct. Spaces 2022, 2022, 4856002. [Google Scholar] [CrossRef]
- Ma, J.; Hu, J. Safe Consensus Control of Cooperative-Competitive Multi-Agent Systems via Differential Privacy. Kybernetika 2022, 58, 426–439. [Google Scholar] [CrossRef]
- Ma, Q.; Xu, S. Intentional Delay Can Benefit Consensus of Second-Order Multi-Agent Systems. Automatica 2023, 147, 110750. [Google Scholar] [CrossRef]
- Jin, H.; Wang, Z.; Wu, L. Global Dynamics of a Three-Species Spatial Food Chain Model. J. Differ. Equ. 2022, 333, 144–183. [Google Scholar] [CrossRef]
- Liu, P.; Shi, J.; Wang, Z.-A. Pattern Formation of the Attraction-Repulsion Keller-Segel System. Discret. Contin. Dyn. Syst.-B 2013, 18, 2597–2625. [Google Scholar] [CrossRef]
- Xu, K.; Guo, Y.; Liu, Y.; Deng, X.; Chen, Q.; Ma, Z. 60-GHz Compact Dual-Mode On-Chip Bandpass Filter Using GaAs Technology. IEEE Electron Device Lett. 2021, 42, 1120–1123. [Google Scholar] [CrossRef]
- Zhabotinsky, A.M. Belousov-zhabotinsky reaction. Scholarpedia 2007, 2, 1435. [Google Scholar] [CrossRef]
- Jafaria, J.; Nazarib, M.; Baleanuc, D.; Khalique, C.M. A new approach for solving a system of fractional partial differential equations. Comput. Math. Appl. 2013, 66, 838–843. [Google Scholar] [CrossRef]
- Odibat, Z.; Momani, S. Application of variational iteration method to nonlinear differential equations of fractional order. Int. J. Nonlinear Sci. Numer. Simulat. 2006, 7, 27–34. [Google Scholar] [CrossRef]
- Dehghan, M.; Manafian, J.; Saadatmandi, A. Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Partial. Differ. Equ. Int. J. 2010, 26, 448–479. [Google Scholar] [CrossRef]
- Ray, S.S.; Bera, R.K. Analytical solution of a fractional diffusion equation by Adomian decomposition method. Appl. Math. Comput. 2006, 174, 329–336. [Google Scholar]
- Alquran, M.; Al-Khaled, K.; Chattopadhyay, J. Analytical solutions of fractional population diffusion model: Residual power series. Nonlinear Stud. 2015, 22, 31–39. [Google Scholar]
- Arqub, O.A. Series solution of fuzzy differential equations under strongly generalized differentiability. J. OfAdvanced Res. Appl. Math. 2013, 5, 31–52. [Google Scholar] [CrossRef]
- Arqub, O.A.; El-Ajou, A.; Momani, S. Constructing and predicting solitary pattern solutions for nonlinear timefractional dispersive partial differential equations. J. Comput. Phys. 2015, 293, 385–399. [Google Scholar] [CrossRef]
- Arqub, O.A.; El-Ajou, A.; Bataineh, A.S.; Hashim, I. A representation of the exact solution of generalized Lane-Emden equations using a new analytical method. Abstr. Appl. Anal. 2013, 2013, 378593. [Google Scholar] [CrossRef]
- Arqub, O.A.; Abo-Hammour, Z.; Al-Badarneh, R.; Momani, S. A reliable analytical method for solving higher-order initial value problems. Discret. Dyn. Nat. Soc. 2013, 2013, 673829. [Google Scholar] [CrossRef]
- El-Ajou, A.; Arqub, O.A.; Momani, S.; Baleanu, D.; Alsaedi, A. A novel expansion iterative method for solving linear partial differential equations of fractional order. Appl. Math. Comput. 2015, 257, 119–133. [Google Scholar] [CrossRef]
- Mukhtar, S.; Noor, S. The Numerical Investigation of a Fractional-Order Multi-Dimensional Model of Navier-Stokes Equation via Novel Techniques. Symmetry 2022, 14, 1102. [Google Scholar] [CrossRef]
- Al-Sawalha, M.M.; Agarwal, R.P.; Shah, R.; Ababneh, O.Y.; Weera, W. A reliable way to deal with fractional-order equations that describe the unsteady flow of a polytropic gas. Mathematics 2022, 10, 2293. [Google Scholar] [CrossRef]
- Shah, N.A.; Alyousef, H.A.; El-Tantawy, S.A.; Chung, J.D. Analytical Investigation of Fractional-Order Korteweg-De-Vries-Type Equations under Atangana-Baleanu-Caputo Operator: Modeling Nonlinear Waves in a Plasma and Fluid. Symmetry 2022, 14, 739. [Google Scholar] [CrossRef]
- Roozi, A.; Alibeiki, E.; Hosseini, S.S.; Shafiof, S.M.; Ebrahimi, M. Homotopy perturbation method for special nonlinear partial differential equations. J. King Saud-Univ. 2011, 23, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xu, K.; Li, J.; Guo, Y.; Zhang, A.; Zhang, L.; Chen, Q. Millimeter-Wave E-Plane Waveguide Bandpass Filters Based on Spoof Surface Plasmon Polaritons. IEEE Trans. Microw. Theory Tech. 2022, 70, 4399–4409. [Google Scholar] [CrossRef]
- Liu, M.; Gu, Q.; Yang, B.; Yin, Z.; Liu, S.; Yin, L.; Zheng, W. Kinematics Model Optimization Algorithm for Six Degrees of Freedom Parallel Platform. Appl. Sci. 2023, 13, 3082. [Google Scholar] [CrossRef]
- Lu, S.; Ban, Y.; Zhang, X.; Yang, B.; Liu, S.; Yin, L.; Zheng, W. Adaptive Control of Time Delay Teleoperation System with Uncertain Dynamics. Front. Neurorobot. 2022, 16, 928863. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Yin, Z.; Liao, S.; Yang, B.; Liu, S.; Liu, M.; Yin, L.; Zheng, W. An Asymmetric Encoder-Decoder Model for Zn-ion Battery Lifetime Prediction. Energy Rep. 2022, 8, 33–50. [Google Scholar] [CrossRef]
- Dang, W.; Liao, S.; Yang, B.; Yin, Z.; Liu, M.; Yin, L.; Zheng, W. An Encoder-Decoder Fusion Battery Life Prediction Method Based on Gaussian Process Regression and Improvement. J. Energy Storage 2023, 59, 106469. [Google Scholar] [CrossRef]
- El-Ajou, A. Adapting the Laplace transform to create solitary solutions for the nonlinear time-fractional dispersive PDEs via a new approach. Eur. Phys. J. Plus 2021, 136, 229. [Google Scholar] [CrossRef]
Comparison of the NIM and LRPSM Solutions with Absolute Error for | |||||||
---|---|---|---|---|---|---|---|
NIM Solution | LRPSM Solution | Exact Solution | NIM Error | LRPSM Error | Generalized Taylor series | ||
1.00 | −0.39842 | −0.38887 | −0.38884 | 0.009557 | 0.0000290375 | 0.0000280395 | |
1.20 | −0.35982 | −0.35121 | −0.3512 | 0.008622 | 0.0000109524 | 0.0000108523 | |
1.40 | −0.32044 | −0.31277 | −0.31277 | 0.00767 | 0.0000034773 | 0.0000034883 | |
1.60 | −0.28182 | −0.27507 | −0.27509 | 0.006738 | 0.0000139555 | 0.0000139654 | |
1.80 | −0.24515 | −0.23927 | −0.23929 | 0.005855 | 0.0000207583 | 0.0000207789 | |
2.00 | −0.21121 | −0.20615 | −0.20617 | 0.00504 | 0.0000244851 | 0.0000244978 | |
1.00 | −0.39843 | −0.38887 | −0.38884 | 0.009557 | 0.0000290375 | 0.0000290375 | |
1.20 | −0.35982 | −0.35121 | −0.3512 | 0.008622 | 0.0000109524 | 0.0000109524 | |
1.40 | −0.32044 | −0.31277 | −0.31277 | 0.00767 | 0.0000034779 | 0.0000034779 | |
1.60 | −0.28182 | −0.27507 | −0.27509 | 0.006738 | 0.0000139555 | 0.0000139555 | |
1.80 | −0.24515 | −0.23927 | −0.23929 | 0.005855 | 0.0000207583 | 0.0000207583 | |
2.00 | −0.21121 | −0.20615 | −0.20617 | 0.00504 | 0.0000244851 | 0.0000244851 |
Comparison of NIM and LRPSM Solutions with Absolute Error for | |||||||
---|---|---|---|---|---|---|---|
NIM Solution | LRPSM Solution | Exact Solution | NIM Error | LRPSM Error | Generalized Taylor series | ||
2.0 | 0.551882 | 0.551883 | 0.553454 | 0.001571810 | 0.001570570 | 0.001570570 | |
2.2 | 0.621168 | 0.621170 | 0.622512 | 0.001343914 | 0.001342650 | 0.001342650 | |
2.4 | 0.681399 | 0.681401 | 0.682546 | 0.001140890 | 0.001139630 | 0.001139630 | |
2.6 | 0.733241 | 0.733241 | 0.734202 | 0.000962688 | 0.000961455 | 0.000961455 | |
2.8 | 0.777484 | 0.777485 | 0.778292 | 0.000808172 | 0.000807004 | 0.000807004 | |
3.0 | 0.814978 | 0.814979 | 0.815654 | 0.000675545 | 0.000674467 | 0.000674467 | |
1.00 | −0.39843 | −0.38887 | −0.38884 | 0.009557 | 0.0000290375 | 0.0000290375 | |
2.0 | 0.552432 | 0.552443 | 0.557129 | 0.00469676 | 0.004685690 | 0.004685690 | |
2.2 | 0.621710 | 0.621722 | 0.625723 | 0.00401319 | 0.004001820 | 0.004001820 | |
2.4 | 0.681911 | 0.681922 | 0.685316 | 0.00340511 | 0.003393710 | 0.003393710 | |
2.6 | 0.733708 | 0.733719 | 0.736580 | 0.00287199 | 0.002860890 | 0.002860890 | |
2.8 | 0.777903 | 0.777913 | 0.780313 | 0.00241016 | 0.002399650 | 0.002399650 | |
3.0 | 0.815346 | 0.815356 | 0.817360 | 0.00201405 | 0.002004340 | 0.002004340 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Tantawy, S.A.; Shah, R.; Alrowaily, A.W.; Shah, N.A.; Chung, J.D.; Ismaeel, S.M.E. A Comparative Study of the Fractional-Order Belousov–Zhabotinsky System. Mathematics 2023, 11, 1751. https://doi.org/10.3390/math11071751
El-Tantawy SA, Shah R, Alrowaily AW, Shah NA, Chung JD, Ismaeel SME. A Comparative Study of the Fractional-Order Belousov–Zhabotinsky System. Mathematics. 2023; 11(7):1751. https://doi.org/10.3390/math11071751
Chicago/Turabian StyleEl-Tantawy, Samir A., Rasool Shah, Albandari W. Alrowaily, Nehad Ali Shah, Jae Dong Chung, and Sherif. M. E. Ismaeel. 2023. "A Comparative Study of the Fractional-Order Belousov–Zhabotinsky System" Mathematics 11, no. 7: 1751. https://doi.org/10.3390/math11071751
APA StyleEl-Tantawy, S. A., Shah, R., Alrowaily, A. W., Shah, N. A., Chung, J. D., & Ismaeel, S. M. E. (2023). A Comparative Study of the Fractional-Order Belousov–Zhabotinsky System. Mathematics, 11(7), 1751. https://doi.org/10.3390/math11071751