Nonlinear Techniques and Ridge Regression as a Combined Approach: Carcinoma Identification Case Study
Abstract
:1. Introduction and Literature Review
Objectives
2. Materials and Methods
2.1. Data
2.2. Notation
2.3. Preliminary Filtering
2.4. Variance Filtering
2.5. Combined Ridge Regression and Nonlinear Modeling
Algorithm 1 Grid approach optimization (,) |
Input: Output:
|
Algorithm 2 Grid approach optimization (,, ) |
Input: ,, Output: (
|
3. Results
4. Discussion
Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
CpG | CpG Code (GEO) |
---|---|
1 | cg15290312 |
2 | cg14331362 |
3 | cg01270299 |
4 | cg07352438 |
5 | cg19393008 |
6 | cg26110710 |
7 | cg21523564 |
8 | cg14487131 |
9 | cg00259849 |
10 | cg14262681 |
11 | cg02263377 |
12 | cg06073449 |
13 | cg18456523 |
References
- Deshmukh, A.A.; Suk, R.; Shiels, M.S.; Sonawane, K.; Nyitray, A.G.; Liu, Y.; Gaisa, M.M.; Palefsky, J.M.; Sigel, K. Recent trends in squamous cell carcinoma of the anus incidence and mortality in the United States, 2001–2015. JNCI J. Natl. Cancer Inst. 1991, 338, 657–659. [Google Scholar] [CrossRef] [PubMed]
- Eng, C.; Ciombor, K.K.; Cho, M.; Dorth, J.A.; Rajdev, L.N.; Horowitz, D.P.; Gollub, M.J.; Jacome, A.A.; Lockney, N.A.; Muldoon, R.L. Anal cancer: Emerging standards in a rare disease. J. Clin. Oncol. 2022, 40, 2774–2788. [Google Scholar] [CrossRef] [PubMed]
- Monsrud, A.L.; Avadhani, V.; Mosunjac, M.B.; Flowers, L.; Krishnamurti, U. Programmed death ligand-1 expression is associated with poorer survival in anal squamous cell carcinoma. Arch. Pathol. Lab. Med. 2022, 146, 1094–1101. [Google Scholar] [CrossRef] [PubMed]
- Saiki, Y.; Yamada, K.; Tanaka, M.; Fukunaga, M.; Irei, Y.; Suzuki, T. Prognosis of anal canal adenocarcinoma versus lower rectal adenocarcinoma in Japan: A propensity score matching study. Surg. Today 2022, 52, 420–430. [Google Scholar] [CrossRef] [PubMed]
- Lupi, M.; Brogden, D.; Howell, A.; Tekkis, P.; Mills, S.; Kontovounisios, C. Anal Cancer in High-Risk Women: The Lost Tribe. Cancers 2022, 15, 60. [Google Scholar] [CrossRef]
- Melbye, M.; Sprogel, P. Aetiological parallel between anal cancer and cervical cancer. Lancet 1991, 338, 657–659. [Google Scholar] [CrossRef]
- Rabkin, C.S.; Biggar, R.J.; Melbye, M.; Curtis, R.E. Second primary cancers following anal and cervical carcinoma: Evidence of shared etiologic factors. Am. J. Epidemiol. 1992, 136, 54–58. [Google Scholar] [CrossRef]
- Scholefield, J.H.; Talbot, I.C.; Whatrup, C.; Sonnex, C.; Palmer, J.G.; Mindel, A.; Northover, J.M.A. Anal and cervical intraepithelial neoplasia: Possible parallel. Lancet 1989, 334, 765–769. [Google Scholar] [CrossRef]
- Palmer, J.G.; Scholffield, J.H.; Coates, P.J.; Shepherd, N.A.; Jass, J.R.; Crawford, L.V.; Northover, J.M.A. Anal cancer and human papillomaviruses. Dis. Colon Rectum 1989, 32, 1016–1022. [Google Scholar] [CrossRef]
- Doggett, S.W.; Green, J.P.; Cantril, S.T. Efficacy of radiation therapy alone for limited squamous cell carcinoma of the anal canal. Int. J. Radiat. Oncol. Biol. Phys. 1988, 15, 1069–1072. [Google Scholar] [CrossRef]
- Darragh, T.M.; Winkler, B. Anal cancer and cervical cancer screening: Key differences. Cancer Cytopathol. 2011, 119, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, S.; De Vuyst, H. Human papillomavirus vaccines and anal carcinoma. Curr. Opin. HIV AIDS 2009, 4, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Škamperle, M.; Kocjan, B.J.; Maver, P.J.; Seme, K.; Poljak, M. Human papillomavirus (HPV) prevalence and HPV type distribution in cervical, vulvar, and anal cancers in central and eastern Europe. Acta Dermatovenerol. Alpina Panon. Adriat. 2013, 22, 1–5. [Google Scholar] [PubMed]
- Ryan, D.P.; Compton, C.C.; Mayer, R.J. Carcinoma of the anal canal. N. Engl. J. Med. 2000, 342, 792–800. [Google Scholar] [CrossRef]
- de Sanjose, S.; Bruni, L.; Alemany, L. HPV in genital cancers (at the exception of cervical cancer) and anal cancers. La Presse Médicale 2014, 43, 423–428. [Google Scholar] [CrossRef]
- Williams, G.R.; Talbot, I.C. Anal carcinoma—A histological review. Histopathology 1994, 25, 507–516. [Google Scholar] [CrossRef]
- Sumner, L.; Kamitani, E.; Chase, S.; Wang, Y. A systematic review and meta-analysis of mortality in anal cancer patients by HIV status. Histopathology 2022, 76, 102069. [Google Scholar] [CrossRef]
- Naito, T.; Suzuki, M.; Fukushima, S.; Yuda, M.; Fukui, N.; Tsukamoto, S.; Fujibayashi, K.; Goto-Hirano, K.; Kuwatsuru, R. Comorbidities and co-medications among 28 089 people living with HIV: A nationwide cohort study from 2009 to 2019 in Japan. HIV Med. 2022, 23, 485–493. [Google Scholar] [CrossRef]
- Muchengeti, M.; Bartels, L.; Olago, V.; Dhokotera, T.; Chen, W.C.; Spoerri, A.; Rohner, E.; Butikofer, L.; Ruffieux, Y.; Singh, E. Cohort profile: The South African HIV Cancer Match (SAM) Study, a national population-based cohort. BMJ Open 2022, 12, 053460. [Google Scholar] [CrossRef]
- Varnai, A.D.; Bollmann, M.; Griefingholt, H.; Speich, N.; Schmitt, C.; Bollmann, R.; Decker, D. HPV in anal squamous cell carcinoma and anal intraepithelial neoplasia (AIN) Impact of HPV analysis of anal lesions on diagnosis and prognosis. Int. J. Color. Dis. 2006, 21, 135–142. [Google Scholar] [CrossRef]
- van der Zee, R.P.; Richel, O.; van Noesel, C.J.M.; Novianti, P.W.; Ciocanea-Teodorescu, I.; van Splunter, A.P.; Duin, S.; van den Berk, G.E.L.; Meijer, C.; Quint, W. Host cell deoxyribonucleic acid methylation markers for the detection of high-grade anal intraepithelial neoplasia and anal cancer. Clin. Infect. Dis. 2019, 68, 1110–1117. [Google Scholar] [CrossRef] [PubMed]
- Legarth, R.; Helleberg, M.; Kronborg, G.; Larsen, C.S.; Pedersen, G.; Pedersen, C.; Jensen, J.; Nielsen, L.N.; Gerstoft, J.; Obel, N. Anal carcinoma in HIV-infected patients in the period 1995–2009: A Danish nationwide cohort study. Scand. J. Infect. Dis. 2013, 45, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Kreuter, A.; Potthoff, A.; Brockmeyer, N.H.; Gambichler, T.; Swoboda, J.; Stucker, M.; Schmitt, M.; Pfister, H.; Wieland, U. Anal carcinoma in human immunodeficiency virus-positive men: Results of a prospective study from Germany. Br. J. Dermatol. 2010, 162, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Martins, C.R.; Fansler, Z.B.; Roemer, K.L.; Kincaid, E.A.; Gustafson, K.S.; Heitjan, D.F.; Clark, D.P. DNA methylation in anal intraepithelial lesions and anal squamous cell carcinoma. Clin. Cancer Res. 2005, 11, 6544–6549. [Google Scholar] [CrossRef] [Green Version]
- Siegel, E.M.; Ajidahun, A.; Berglund, A.; Guerrero, W.; Eschrich, S.; Putney, R.M.; Magliocco, A.; Riggs, B.; Winter, K.; Simko, J.P. Genome-wide host methylation profiling of anal and cervical carcinoma. PLoS ONE 2021, 16, e0260857. [Google Scholar] [CrossRef]
- Greener, J.G.; Kandathil, S.M.; Moffat, L.; Jones, D.T. A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 2022, 23, 40–55. [Google Scholar] [CrossRef]
- Salau, A.O.; Jain, S. Feature extraction: A survey of the types, techniques, applications. In Proceedings of the 2019 International Conference on Signal Processing and Communication (ICSC), Noida, India, 7–9 March 2019; pp. 158–164. [Google Scholar]
- Guarino, A.; Lettieri, N.; Malandrino, D.; Zaccagnino, R.; Capo, C. Adam or Eve? Automatic users’ gender classification via gestures analysis on touch devices. Neural Comput. Appl. 2022, 34, 18473–18495. [Google Scholar] [CrossRef]
- Rabbani, N.; Kim, G.Y.; Suarez, C.J.; Chen, J.H. Applications of machine learning in routine laboratory medicine: Current state and future directions. Clin. Biochem. 2021, 103, 1–7. [Google Scholar] [CrossRef]
- Quazi, S. Artificial intelligence and machine learning in precision and genomic medicine. Med. Oncol. 2022, 39, 120. [Google Scholar] [CrossRef]
- Mueller, B.; Kinoshita, T.; Peebles, A.; Graber, M.A.; Lee, S. Artificial intelligence and machine learning in emergency medicine: A narrative review. Acute Med. Surg. 2022, 9, 740. [Google Scholar] [CrossRef]
- Cai, Z.; Poulos, R.C.; Liu, J.; Zhong, Q. Machine learning for multi-omics data integration in cancer. iScience 2022, 2022, 103798. [Google Scholar] [CrossRef] [PubMed]
- Capobianco, E. High-dimensional role of AI and machine learning in cancer research. Br. J. Cancer 2022, 126, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Painuli, D.; Bhardwaj, S. Recent advancement in cancer diagnosis using machine learning and deep learning techniques: A comprehensive review. Comput. Biol. Med. 2022, 2022, 105580. [Google Scholar] [CrossRef]
- Cuocolo, R.; Caruso, M.; Perillo, T.; Ugga, L.; Petretta, M. Machine learning in oncology: A clinical appraisal. Cancer Lett. 2020, 481, 55–62. [Google Scholar] [CrossRef]
- Forsch, S.; Klauschen, F.; Hufnagl, P.; Roth, W. Artificial intelligence in pathology. Deutsches Ärzteblatt Int. 2021, 118, 199. [Google Scholar] [CrossRef]
- Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.; Fotiadis, D.I. Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 2015, 13, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Wang, C.; Fu, X. Bidirectional deep neural networks to integrate RNA and DNA data for predicting outcome for patients with hepatocellular carcinoma. Future Oncol. 2021, 17, 4481–4495. [Google Scholar] [CrossRef] [PubMed]
- Nartowt, B.J.; Hart, G.R.; Roffman, D.A.; Llor, X.; Ali, I.; Muhammad, W.; Liang, Y.; Deng, J. Scoring colorectal cancer risk with an artificial neural network based on self-reportable personal health data. PLoS ONE 2019, 14, 0221421. [Google Scholar] [CrossRef] [Green Version]
- Marchevsky, A.M. The Use of Artificial Neural Networks for the Diagnosis and Estimation of Prognosis in Cancer Patients. Outcome Predict. Cancer 2007, 243–259. [Google Scholar] [CrossRef]
- Ligor, T.; Pater, L.; Buszewski, B. Application of an artificial neural network model for selection of potential lung cancer biomarkers. J. Breath Res. 2015, 9, 027106. [Google Scholar] [CrossRef]
- Calabrese, E.; Rudie, J.D.; Rauschecker, A.M.; Villanueva-Meyer, J.E.; Clarke, J.L.; Solomon, D.A.; Cha, S. Combining radiomics and deep convolutional neural network features from preoperative MRI for predicting clinically relevant genetic biomarkers in glioblastoma. Neuro-Oncol. Adv. 2022, 4, 60. [Google Scholar] [CrossRef] [PubMed]
- Pergialiotis, V.; Pouliakis, A.; Parthenis, C.; Damaskou, V.; Chrelias, C.; Papantoniou, N.; Panayiotides, I. The utility of artificial neural networks and classification and regression trees for the prediction of endometrial cancer in postmenopausal women. Public Health 2018, 164, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Xue, Z.; Yan, C.; Wang, J.; Luo, H. A novel biomarker identification approach for gastric cancer using gene expression and DNA methylation dataset. Front. Genet. 2021, 12, 644378. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Yao, Y.; Wang, Y.; Wang, L.; Cui, H. PD-L1 and immune infiltration of m6A RNA methylation regulators and its miRNA regulators in hepatocellular carcinoma. BioMed Res. Int. 2021, 2021, 1–16. [Google Scholar] [CrossRef]
- Butcher, L.M.; Beck, S. Probe Lasso: A novel method to rope in differentially methylated regions with 450 K DNA methylation data. Methods 2015, 72, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Kim, S.; Zhi, D.; Cui, X. Predicting gene expression using DNA methylation in three human populations. PeerJ 2019, 7, 6757. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.P.; Patuwo, B.E.; Hu, M.Y. A simulation study of artificial neural networks for nonlinear time-series forecasting. Comput. Oper. Res. 2001, 28, 381–396. [Google Scholar] [CrossRef]
- Liu, S.; Xu, M.; Wang, J.; Lu, F.; Zhang, W.; Tian, H.; Chang, G. A multilevel artificial neural network nonlinear equalizer for millimetre-wave mobile fronthaul systems. J. Light. Technol. 2017, 35, 4406–4417. [Google Scholar] [CrossRef]
- Cong, S.; Liang, Y. PID-like neural network nonlinear adaptive control for uncertain multivariable motion control systems. IEEE Trans. Ind. Electron. 2009, 56, 3872–3879. [Google Scholar] [CrossRef]
- Wang, H.Y.; Chang, S.C.; Lin, W.Y.; Chen, C.H.; Chiang, S.H.; Huang, K.Y.; Chu, B.Y.; Lu, J.J.; Lee, T.Y. Machine Learning-Based Method for Obesity Risk Evaluation Using Single-Nucleotide Polymorphisms Derived from Next-Generation Sequencing. J. Comput. Biol. 2018, 25, 1347–1360. [Google Scholar] [CrossRef]
- Tu, J.V. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J. Clin. Epidemiol. 1996, 49, 1225–1231. [Google Scholar] [CrossRef] [PubMed]
- Alfonso Perez, G.; Castillo, R. Identification of Systemic Sclerosis through Machine Learning Algorithms and Gene Expression. Mathematics 2022, 10, 4632. [Google Scholar] [CrossRef]
- Puleston, D.J.; Buck, M.D.; Klein, G.R.I.; Kyle, R.L.; Caputa, G.; O’Sullivan, D.; Cameron, A.M.; Castoldi, A.; Musa, Y.; Kabat, A.M.; et al. Polyamines and eIF5A Hypusination Modulate Mitochondrial Respiration and Macrophage Activation. Cell Metab. 2019, 30, 352–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vabalas, A.; Gowen, E.; Poliakoff, E.; Casson, A.J. Machine learning algorithm validation with a limited sample size. PLoS ONE 2019, 14, e0224365. [Google Scholar] [CrossRef] [PubMed]
- McDonald, G.C. Ridge regression. Wiley Interdiscip. Rev. Comput. Stat. 2009, 1, 93–100. [Google Scholar] [CrossRef]
- Marquardt, D.W.; Snee, R.D. Ridge regression in practice. Am. Stat. 1975, 29, 3–20. [Google Scholar]
- Hoerl, A.E.; Kannard, R.W.; Baldwin, K.F. Ridge regression: Some simulations. Commun.-Stat.-Theory Methods 1975, 4, 105–123. [Google Scholar] [CrossRef]
Metric | Algorithm 1 | Algorithm 2 * | Algorithm 2 ** | Base |
---|---|---|---|---|
Accuracy | 97.69 | 96.92 | 94.62 | 69.23 |
Specificity | 98.26 | 97.34 | 98.26 | 78.95 |
Sensitivity | 95.02 | 93.33 | 78.67 | 42.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfonso Perez, G.; Castillo, R. Nonlinear Techniques and Ridge Regression as a Combined Approach: Carcinoma Identification Case Study. Mathematics 2023, 11, 1795. https://doi.org/10.3390/math11081795
Alfonso Perez G, Castillo R. Nonlinear Techniques and Ridge Regression as a Combined Approach: Carcinoma Identification Case Study. Mathematics. 2023; 11(8):1795. https://doi.org/10.3390/math11081795
Chicago/Turabian StyleAlfonso Perez, Gerardo, and Raquel Castillo. 2023. "Nonlinear Techniques and Ridge Regression as a Combined Approach: Carcinoma Identification Case Study" Mathematics 11, no. 8: 1795. https://doi.org/10.3390/math11081795
APA StyleAlfonso Perez, G., & Castillo, R. (2023). Nonlinear Techniques and Ridge Regression as a Combined Approach: Carcinoma Identification Case Study. Mathematics, 11(8), 1795. https://doi.org/10.3390/math11081795