An Adaptive-to-Model Test for Parametric Functional Single-Index Model
Abstract
:1. Introduction
2. The Test Statistic
3. Identification and Estimation of and
3.1. A Brief Review on FSIR
Algorithm 1: Estimation of |
step 1. Compute the sample mean and sample variance functions and , where , then, define , . step 2. Discretize Y: let be slice intervals in , define and , , then, , , where is the empirical distribution function, is the number of elements that satisfy . step 3. Approximate by . step 4. Let and be the top r eigenvectors and eigenvalues of , where and . The sufficient predictors are
|
3.2. Estimating the Structural Dimension
4. Asymptotic Properties
5. Simulations Results and Real Data Analysis
5.1. Study 1: Linear Link Function
Algorithm 2: Calculate and |
step 1. To obtain in and , we use the function in the package of R for the FLM parameter estimation. step 2. in the kernel function of the test statistic is estimated by Algorithm 1. step 3. is determined by (6). When , is a one-dimensional kernel function; when , is the product of one-dimensional kernel functions. step 4. Then, we compute and in (5). |
- ;
- ;
- ;
- ;
- ;
- ,
- ;
- ;
- ;
- ,
5.2. Study 2: Non-Linear Link Function
- ;
- ;
- .
- ;
- ;
- .
5.3. Analysis of the COVID-19 Data
6. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Part I
Appendix A.2. Part II
Appendix A.3. Part III
Appendix B
Models | Sample | c | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.032 | 0.047 | 0.035 | 0.036 | 0.052 | 0.042 | 0.054 | 0.059 | ||
2 | 0.175 | 0.246 | 0.390 | 0.186 | 0.258 | 0.424 | 0.136 | 0.125 | ||
4 | 0.699 | 0.771 | 0.941 | 0.749 | 0.814 | 0.957 | 0.327 | 0.270 | ||
6 | 0.981 | 0.990 | 0.997 | 0.989 | 0.995 | 0.999 | 0.559 | 0.471 | ||
0 | 0.038 | 0.045 | 0.040 | 0.039 | 0.051 | 0.048 | 0.052 | 0.047 | ||
2 | 0.397 | 0.492 | 0.740 | 0.403 | 0.531 | 0.740 | 0.229 | 0.196 | ||
4 | 0.981 | 0.988 | 0.999 | 0.989 | 0.991 | 0.999 | 0.582 | 0.493 | ||
6 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.812 | 0.723 | ||
0 | 0.032 | 0.047 | 0.035 | 0.036 | 0.052 | 0.042 | 0.054 | 0.059 | ||
2 | 0.170 | 0.217 | 0.390 | 0.204 | 0.250 | 0.557 | 0.404 | 0.299 | ||
4 | 0.762 | 0.742 | 0.590 | 0.820 | 0.790 | 0.650 | 0.761 | 0.673 | ||
6 | 0.978 | 0.957 | 0.877 | 0.983 | 0.968 | 0.893 | 0.893 | 0.839 | ||
0 | 0.038 | 0.045 | 0.040 | 0.039 | 0.051 | 0.048 | 0.052 | 0.047 | ||
2 | 0.426 | 0.490 | 0.798 | 0.491 | 0.569 | 0.935 | 0.691 | 0.556 | ||
4 | 0.989 | 0.990 | 0.931 | 0.997 | 0.996 | 0.951 | 0.972 | 0.938 | ||
6 | 1.000 | 1.000 | 0.997 | 1.000 | 1.000 | 0.997 | 0.993 | 0.989 | ||
0 | 0.032 | 0.047 | 0.035 | 0.036 | 0.052 | 0.042 | 0.054 | 0.059 | ||
2 | 0.090 | 0.141 | 0.123 | 0.115 | 0.153 | 0.198 | 0.257 | 0.181 | ||
4 | 0.453 | 0.494 | 0.579 | 0.528 | 0.550 | 0.646 | 0.634 | 0.522 | ||
6 | 0.819 | 0.798 | 0.844 | 0.877 | 0.848 | 0.879 | 0.788 | 0.710 | ||
0 | 0.038 | 0.045 | 0.040 | 0.039 | 0.051 | 0.048 | 0.052 | 0.047 | ||
2 | 0.187 | 0.265 | 0.263 | 0.270 | 0.345 | 0.434 | 0.503 | 0.368 | ||
4 | 0.848 | 0.877 | 0.917 | 0.928 | 0.932 | 0.944 | 0.883 | 0.818 | ||
6 | 0.992 | 0.993 | 0.995 | 0.999 | 0.999 | 1.000 | 0.954 | 0.926 | ||
0 | 0.032 | 0.047 | 0.035 | 0.036 | 0.052 | 0.042 | 0.054 | 0.059 | ||
2 | 0.117 | 0.166 | 0.151 | 0.146 | 0.201 | 0.233 | 0.195 | 0.158 | ||
4 | 0.523 | 0.547 | 0.758 | 0.613 | 0.624 | 0.799 | 0.324 | 0.279 | ||
6 | 0.853 | 0.843 | 0.950 | 0.872 | 0.883 | 0.954 | 0.371 | 0.326 | ||
0 | 0.038 | 0.045 | 0.040 | 0.039 | 0.051 | 0.048 | 0.052 | 0.047 | ||
2 | 0.291 | 0.375 | 0.352 | 0.399 | 0.486 | 0.521 | 0.285 | 0.235 | ||
4 | 0.835 | 0.848 | 0.977 | 0.876 | 0.876 | 0.985 | 0.460 | 0.414 | ||
6 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.509 | 0.467 | ||
0 | 0.032 | 0.047 | 0.035 | 0.036 | 0.052 | 0.042 | 0.054 | 0.059 | ||
2 | 0.244 | 0.314 | 0.348 | 0.283 | 0.350 | 0.444 | 0.349 | 0.278 | ||
4 | 0.826 | 0.836 | 0.937 | 0.857 | 0.858 | 0.956 | 0.541 | 0.496 | ||
6 | 0.881 | 0.876 | 0.996 | 0.883 | 0.867 | 0.995 | 0.570 | 0.520 | ||
0 | 0.038 | 0.045 | 0.040 | 0.039 | 0.051 | 0.048 | 0.052 | 0.047 | ||
2 | 0.581 | 0.661 | 0.704 | 0.679 | 0.745 | 0.832 | 0.517 | 0.454 | ||
4 | 0.896 | 0.898 | 1.000 | 0.898 | 0.899 | 0.999 | 0.717 | 0.671 | ||
6 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.726 | 0.687 | ||
0 | 0.032 | 0.047 | 0.035 | 0.036 | 0.052 | 0.042 | 0.054 | 0.059 | ||
2 | 0.242 | 0.315 | 0.343 | 0.281 | 0.350 | 0.479 | 0.344 | 0.296 | ||
4 | 0.730 | 0.724 | 0.946 | 0.755 | 0.743 | 0.958 | 0.530 | 0.469 | ||
6 | 0.890 | 0.880 | 0.995 | 0.890 | 0.882 | 0.996 | 0.579 | 0.528 | ||
0 | 0.038 | 0.045 | 0.040 | 0.039 | 0.051 | 0.048 | 0.052 | 0.047 | ||
2 | 0.582 | 0.661 | 0.737 | 0.676 | 0.734 | 0.857 | 0.529 | 0.466 | ||
4 | 0.898 | 0.897 | 1.000 | 0.901 | 0.902 | 1.000 | 0.717 | 0.670 | ||
6 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.740 | 0.703 |
DGM | Sample | c | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.037 | 0.045 | 0.043 | 0.039 | 0.044 | 0.046 | 0.053 | 0.049 | ||
2 | 0.168 | 0.242 | 0.258 | 0.185 | 0.254 | 0.370 | 0.262 | 0.192 | ||
4 | 0.667 | 0.703 | 0.907 | 0.716 | 0.743 | 0.947 | 0.417 | 0.369 | ||
6 | 0.848 | 0.843 | 0.990 | 0.865 | 0.851 | 0.994 | 0.544 | 0.486 | ||
0 | 0.041 | 0.054 | 0.038 | 0.047 | 0.041 | 0.053 | 0.057 | 0.059 | ||
2 | 0.401 | 0.490 | 0.560 | 0.442 | 0.562 | 0.750 | 0.396 | 0.319 | ||
4 | 0.885 | 0.884 | 1.000 | 0.896 | 0.895 | 1.000 | 0.649 | 0.601 | ||
6 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.698 | 0.646 | ||
0 | 0.039 | 0.049 | 0.052 | 0.038 | 0.048 | 0.056 | 0.050 | 0.054 | ||
2 | 0.238 | 0.298 | 0.359 | 0.262 | 0.310 | 0.491 | 0.342 | 0.266 | ||
4 | 0.806 | 0.814 | 0.966 | 0.838 | 0.831 | 0.985 | 0.563 | 0.485 | ||
6 | 0.875 | 0.870 | 0.999 | 0.884 | 0.874 | 0.999 | 0.666 | 0.586 | ||
0 | 0.033 | 0.061 | 0.057 | 0.039 | 0.046 | 0.052 | 0.062 | 0.049 | ||
2 | 0.534 | 0.614 | 0.730 | 0.609 | 0.692 | 0.867 | 0.538 | 0.443 | ||
4 | 0.897 | 0.899 | 1.000 | 0.897 | 0.898 | 1.000 | 0.725 | 0.661 | ||
6 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.805 | 0.773 | ||
0 | 0.030 | 0.058 | 0.044 | 0.040 | 0.063 | 0.052 | 0.061 | 0.066 | ||
2 | 0.059 | 0.097 | 0.060 | 0.059 | 0.100 | 0.058 | 0.113 | 0.100 | ||
4 | 0.175 | 0.251 | 0.284 | 0.185 | 0.252 | 0.392 | 0.211 | 0.177 | ||
6 | 0.430 | 0.506 | 0.794 | 0.479 | 0.542 | 0.882 | 0.337 | 0.274 | ||
0 | 0.036 | 0.047 | 0.045 | 0.038 | 0.046 | 0.048 | 0.054 | 0.053 | ||
2 | 0.100 | 0.165 | 0.149 | 0.118 | 0.192 | 0.166 | 0.186 | 0.165 | ||
4 | 0.468 | 0.558 | 0.683 | 0.530 | 0.620 | 0.818 | 0.352 | 0.292 | ||
6 | 0.778 | 0.786 | 0.992 | 0.812 | 0.833 | 0.997 | 0.501 | 0.424 | ||
0 | 0.038 | 0.054 | 0.042 | 0.039 | 0.053 | 0.055 | 0.053 | 0.061 | ||
2 | 0.225 | 0.302 | 0.266 | 0.242 | 0.319 | 0.245 | 0.315 | 0.284 | ||
4 | 0.781 | 0.785 | 0.953 | 0.819 | 0.810 | 0.975 | 0.564 | 0.506 | ||
6 | 0.883 | 0.872 | 0.997 | 0.885 | 0.875 | 0.998 | 0.646 | 0.591 | ||
0 | 0.039 | 0.042 | 0.041 | 0.043 | 0.045 | 0.051 | 0.061 | 0.071 | ||
2 | 0.527 | 0.623 | 0.586 | 0.619 | 0.684 | 0.620 | 0.513 | 0.456 | ||
4 | 0.996 | 0.997 | 1.000 | 0.997 | 0.997 | 1.000 | 0.747 | 0.686 | ||
6 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.816 | 0.776 |
Statistic | ||||||||
---|---|---|---|---|---|---|---|---|
p-value | 0.000 | 0.009 | 0.000 | 0.000 | 0.013 | 0.000 | 0.528 | 0.374 |
References
- Ait-Saïdi, A.; Ferraty, F.; Kassa, R.; Vieu, P. Cross-validated estimations in the single-functional index model. Statistics 2008, 42, 475–494. [Google Scholar] [CrossRef]
- Ma, S. Estimation and inference in functional single-index models. Ann. Inst. Stat. Math. 2016, 68, 181–208. [Google Scholar] [CrossRef]
- Wang, G.; Feng, X.N.; Chen, M. Functional partial linear single-index model. Scand. J. Stat. 2016, 43, 261–274. [Google Scholar] [CrossRef]
- Jiang, F.; Baek, S.; Cao, J.; Ma, Y. A Functional single-index model. Stat. Sin. 2020, 30, 303–324. [Google Scholar] [CrossRef]
- Jäntschi, L. A test detecting the outliers for continuous distributions based on the cumulative distribution function of the data being tested. Symmetry 2019, 11, 835. [Google Scholar] [CrossRef] [Green Version]
- Cardot, H.; Ferraty, F.; Mas, A.; Sarda, P. Testing hypotheses in the functional linear model. Scand. J. Stat. 2003, 30, 241–255. [Google Scholar] [CrossRef]
- Kokoszka, P.; Maslova, I.; Sojka, J.; Zhu, L. Testing for lack of dependence in the functional linear model. Can. J. Stat. 2008, 36, 207–222. [Google Scholar] [CrossRef]
- Hilgert, N.; Mas, A.; Verzelen, N. Minimax adaptive tests for the functional linear model. Ann. Stat. 2013, 41, 838–869. [Google Scholar] [CrossRef]
- Patilea, V.; Sánchez-Sellero, C.; Saumard, M. Projection-based nonparametric goodness-of-fit testing with functional covariates. arXiv 2012, arXiv:1205.5578. [Google Scholar]
- Patilea, V.; Sánchez-Sellero, C.; Saumard, M. Testing the predictor effect on a functional response. J. Am. Stat. Assoc. 2016, 111, 1684–1695. [Google Scholar] [CrossRef]
- Shi, G.; Du, J.; Sun, Z.; Zhang, Z. Checking the adequacy of functional linear quantile regression model. J. Stat. Plan. Inference 2021, 210, 64–75. [Google Scholar] [CrossRef]
- García-Portugués, E.; González-Manteiga, W.; Febrero-Bande, M. A goodness-of-fit test for the functional linear model with scalar response. J. Comput. Graph. Stat. 2014, 23, 761–778. [Google Scholar] [CrossRef] [Green Version]
- Cuesta-Albertos, J.A.; García-Portugués, E.; Febrero-Bande, M.; González-Manteiga, W. Goodness-of-fit tests for the functional linear model based on randomly projected empirical processes. Ann. Stat. 2019, 47, 439–467. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Wang, T.; Zhu, L. Model checking for parametric single-index models: A dimension reduction model-adaptive approach. J. R. Stat. Soc. Ser. B Stat. Methodol. 2016, 78, 1013–1035. [Google Scholar] [CrossRef]
- Stute, W.; Thies, S.; Zhu, L.X. Model checks for regression: An innovation process approach. Ann. Stat. 1998, 26, 1916–1934. [Google Scholar] [CrossRef]
- Hardle, W.; Mammen, E. Comparing nonparametric versus parametric regression fits. Ann. Stat. 1993, 21, 1926–1947. [Google Scholar] [CrossRef]
- Patilea, V.; Sánchez-Sellero, C. Testing for lack-of-fit in functional regression models against general alternatives. J. Stat. Plan. Inference 2020, 209, 229–251. [Google Scholar] [CrossRef]
- Lian, H. Functional sufficient dimension reduction: Convergence rates and multiple functional case. J. Stat. Plan. Inference 2015, 167, 58–68. [Google Scholar] [CrossRef]
- Ferré, L.; Yao, A.F. Functional sliced inverse regression analysis. Statistics 2003, 37, 475–488. [Google Scholar] [CrossRef]
- Ferré, L.; Yao, A.F. Smoothed functional inverse regression. Stat. Sin. 2005, 15, 665–683. [Google Scholar]
- Wang, G.; Lin, N.; Zhang, B. Functional k-means inverse regression. Comput. Stat. Data Anal. 2014, 70, 172–182. [Google Scholar] [CrossRef]
- Lian, H.; Li, G. Series expansion for functional sufficient dimension reduction. J. Multivar. Anal. 2014, 124, 150–165. [Google Scholar] [CrossRef]
- Ellison, G.; Ellison, S.F. A simple framework for nonparametric specification testing. J. Econom. 2000, 96, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Stute, W.; Zhu, L.X. Model checks for generalized linear models. Scand. J. Stat. 2002, 29, 535–545. [Google Scholar] [CrossRef]
- Hall, P.; Horowitz, J.L. Methodology and convergence rates for functional linear regression. Ann. Stat. 2007, 35, 70–91. [Google Scholar] [CrossRef] [Green Version]
- Yuan, M.; Cai, T.T. A reproducing kernel Hilbert space approach to functional linear regression. Ann. Stat. 2010, 38, 3412–3444. [Google Scholar] [CrossRef]
- Crambes, C.; Kneip, A.; Sarda, P. Smoothing splines estimators for functional linear regression. Ann. Stat. 2009, 37, 35–72. [Google Scholar] [CrossRef]
- Zhao, Y.; Ogden, R.T.; Reiss, P.T. Wavelet-based LASSO in functional linear regression. J. Comput. Graph. Stat. 2012, 21, 600–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B. Sufficient Dimension Reduction: Methods and Applications with R; Chapman and Hall/CRC: Boca Raton, FL, USA, 2018. [Google Scholar]
- Xu, J.; Cheng, H.; Cui, W.; Li, Y. Sufficient dimension reduction via distance covariance for functional and longitudinal data. arXiv 2022, arXiv:2202.13579. [Google Scholar]
- Li, K.C. Sliced inverse regression for dimension reduction. J. Am. Stat. Assoc. 1991, 86, 316–327. [Google Scholar] [CrossRef]
- Lin, Q.; Zhao, Z.; Liu, J.S. On consistency and sparsity for sliced inverse regression in high dimensions. Ann. Stat. 2018, 46, 580–610. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Miao, B.; Peng, H. On sliced inverse regression with high-dimensional covariates. J. Am. Stat. Assoc. 2006, 101, 630–643. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, T.; Zhu, L.; Ferré, L. Sufficient dimension reduction through discretization-expectation estimation. Biometrika 2010, 97, 295–304. [Google Scholar] [CrossRef]
- Zhu, L.P.; Zhu, L.X.; Feng, Z.H. Dimension reduction in regressions through cumulative slicing estimation. J. Am. Stat. Assoc. 2010, 105, 1455–1466. [Google Scholar] [CrossRef]
- Sheng, W.; Yin, X. Sufficient dimension reduction via distance covariance. J. Comput. Graph. Stat. 2016, 25, 91–104. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, X. Robust sufficient dimension reduction via ball covariance. Comput. Stat. Data Anal. 2019, 140, 144–154. [Google Scholar] [CrossRef]
- Du, P.; Wang, X. Penalized likelihood functional regression. Stat. Sin. 2014, 24, 1017–1041. [Google Scholar] [CrossRef] [Green Version]
- Cardot, H.; Sarda, P. Estimation in generalized linear models for functional data via penalized likelihood. J. Multivar. Anal. 2005, 92, 24–41. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.X. A consistent nonparametric test of parametric regression models under conditional quantile restrictions. Econom. Theory 1998, 14, 123–138. [Google Scholar] [CrossRef]
- Niu, C.; Zhu, L. An adaptive-to-model test for parametric single-index models with missing responses. Electron. J. Stat. 2017, 11, 1491–1526. [Google Scholar] [CrossRef]
- Zhu, X.; Guo, X.; Zhu, L. An adaptive-to-model test for partially parametric single-index models. Stat. Comput. 2017, 27, 1193–1204. [Google Scholar] [CrossRef] [Green Version]
- Shi, E.; Liu, Y.; Sun, K.; Li, L.; Kong, L. An adaptive model checking test for functional linear model. arXiv 2022, arXiv:2204.01831. [Google Scholar]
- Mikosch, T. Functional limit theorems for random quadratic forms. Stoch. Process. Their Appl. 1991, 37, 81–98. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Wen, S.; Zhu, L. On a projective resampling method for dimension reduction with multivariate responses. J. Am. Stat. Assoc. 2008, 103, 1177–1186. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, L.; Lai, T.; Zhang, Z. An Adaptive-to-Model Test for Parametric Functional Single-Index Model. Mathematics 2023, 11, 1812. https://doi.org/10.3390/math11081812
Xia L, Lai T, Zhang Z. An Adaptive-to-Model Test for Parametric Functional Single-Index Model. Mathematics. 2023; 11(8):1812. https://doi.org/10.3390/math11081812
Chicago/Turabian StyleXia, Lili, Tingyu Lai, and Zhongzhan Zhang. 2023. "An Adaptive-to-Model Test for Parametric Functional Single-Index Model" Mathematics 11, no. 8: 1812. https://doi.org/10.3390/math11081812
APA StyleXia, L., Lai, T., & Zhang, Z. (2023). An Adaptive-to-Model Test for Parametric Functional Single-Index Model. Mathematics, 11(8), 1812. https://doi.org/10.3390/math11081812