NSGA-II/SDR-OLS: A Novel Large-Scale Many-Objective Optimization Method Using Opposition-Based Learning and Local Search
Abstract
:1. Introduction
- The opposition-based learning (OBL) strategy is introduced in the population initialization stage, an opposite population will be generated according to the initial population, and the best individuals will be selected from the two populations to obtain the final initial population. In this way, the effect of optimizing population quality and convergence speed can be obtained;
- A local search (LS) strategy is introduced in the population search process, which expands the diversity of the population by finding neighborhood solutions, which can prevent the solution from falling into the local optimum prematurely, thus ensuring a good distribution of the solution. This produces a new MaOEA, which we named NSGA-II/SDR-OLS;
- NSGA-II/SDR-OLS and the original NSGA-II/SDR [23] are compared on nine benchmark problems in LSMOPs [24] to evaluate whether NSGA-II/SDR-OLS can effectively solve the problem of rapid performance degradation of the original algorithm in the face of large-scale MaOPs.The algorithm is then compared with PREA [25], S3-CMA-ES [26], DEA-GNG [27], RVEA [28], NSGA-II-conflict [29], and NSGA-III [18,19], and we observe its performance. The experimental results demonstrate that NSGA-II/SDR-OLS outperformed other state-of-the-art algorithms.
2. Related Work
2.1. Multi/Many-Objective Evolutionary Algorithms
2.1.1. Pareto-Dominance-Based Multi/Many-Objective Evolutionary Algorithms
2.1.2. Preferences-Based Multi/Many-Objective Evolutionary Algorithms
2.1.3. Decomposition-Based Multi/Many-Objective Evolutionary Algorithms
2.1.4. Indicator-Based Multi/Many-Objective Evolutionary Algorithms
2.2. Large-Scale Many-Objective Optimization Problems
3. Preliminaries
3.1. Basic Definitions
3.2. NSGA-II/SDR
3.2.1. SDR
3.2.2. Procedure of NSGA-II/SDR
Algorithm 1: NSGA-II/SDR |
4. Improved NSGA-II/SDR with Opposition-Based Learning and Local Search
4.1. Opposition-Based Learning
Algorithm 2: Opposition-based learning |
4.2. Local Search
Algorithm 3: Local search |
4.3. NSGA-II/SDR-OLS
- Step 1:
- Initialization. The generated population P is randomly initialized. The OBL is applied to P to generate the initial population .
- Step 2:
- Update.
- Step 2.1:
- Perform non-dominated sorting by SDR on initial population .
- Step 2.2:
- Perform LS on population to obtain population S, and merge and S to obtain population R.
- Step 2.3:
- Perform the basic operation of GA on R to obtain , which is merged with the parent population R to update R. The basic operation of GA is not introduced in detail here.
- Step 2.4:
- Perform fast non-dominated sorting by SDR on population R, and perform the basic operation of GA on R to obtain , which is merged with the parent R to update R.
- Step 2.5:
- Determine if the algorithm has reached the maximum number of iterations or function evaluation value to control the computational workload and accuracy. If the termination condition is not fulfilled, repeat Steps 2.2–2.5, and if it is satisfied, perform Step 3.
- Step 3:
- Output. Output final population R.
Algorithm 4: NSGA-II/SDR-OLS |
5. Experiments
5.1. Test Problems and Performance Metrics
5.1.1. Test Problems
5.1.2. Performance Metrics
5.2. Experimental Settings
5.3. Comparison
5.3.1. Comparative Algorithms
5.3.2. Comparing NSGA-II/SDR-OLS with Other MaOEAs
5.3.3. Discussion and Statistical Analysis
6. Conclusions
- From the experimental results, we can see that NSGA-II/SDR-OLS does not perform well in solving some problems of linear PFs. In the future, we will conduct more in-depth research on it and try to introduce new effectiveness strategies to further enhance the performance of the algorithm;
- In this paper, the verification was conducted on a problem set with a maximum number of objectives of 15 and a maximum number of decision variables of 1500. In the future, we can improve the applicability of the algorithm by evaluating the test problem set with more objective numbers and more decision variables;
- With the rapid development of the Internet and big data, machine learning and deep learning technologies are developing day by day. Now, many researchers have been committed to finding effective strategies in the field of machine learning and deep learning, as well as to introducing them into multi-objective evolutionary algorithms to improve their performance. We can also work in this direction in the future. In addition, by applying the algorithm to solve large-scale problems in the real world, such as hyperparameter optimization of the model, which meets the characteristics of MaOEAs due to its numerous parameters, such applications can further prove the effectiveness of the algorithm, as well as demonstrate its practical significance.
Author Contributions
Funding
Conflicts of Interest
References
- Krishna, R.; Tang, C.; Sullivan, K.; Ray, B. Conex: Efficient exploration of big-data system configurations for better performance. IEEE Trans. Softw. Eng. 2022, 48, 893–909. [Google Scholar] [CrossRef]
- Cheng, S.; Ma, L.B.; Lu, H.; Lei, X.J.; Shi, Y.H. Evolutionary computation for solving search-based data analytics problems. Artif. Intell. Rev. 2021, 54, 1321–1348. [Google Scholar] [CrossRef]
- Guo, G.H.; Wu, N.J.; Liu, L.Y. Low power application specific soc chip for uncooled infrared image processing. J. Infrared Millim. Waves 2023, 42, 122–131. [Google Scholar]
- Sreedhara, S.; Sorensen, T.J.; Poursaee, A.; Ross, B.E. Practical application of digital image processing in measuring concrete crack widths in field studies. Pract. Period. Struct. Des. Constr. 2023, 28, 05022006. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Y.; Gong, D.W. Multiobjective particle swarm optimization for feature selection with fuzzy cost. IEEE Trans. Cybern. 2021, 51, 874–888. [Google Scholar] [CrossRef] [PubMed]
- Song, X.F.; Zhang, Y.; Gong, D.W.; Gao, X.Z. A fast hybrid feature selection based on correlation-guided clustering and particle swarm optimization for high-dimensional data. IEEE Trans. Cybern. 2022, 52, 9573–9586. [Google Scholar] [CrossRef] [PubMed]
- Tahmasebi, S.; Moradi, P.; Ghodsi, S.; Abdollahpouri, A. An ideal point based many-objective optimization for community detection of complex networks. Inf. Sci. 2019, 502, 125–145. [Google Scholar] [CrossRef]
- Cui, Z.H.; Zhang, J.J.; Wu, D.; Cai, X.J.; Wang, H.; Zhang, W.S.; Chen, J.J. Practical application of digital image processing in measuring concrete crack widths in field studies. Inf. Sci. 2020, 518, 256–271. [Google Scholar] [CrossRef]
- El-Shorbagy, M.A.; El-Refaey, A.M. A hybrid genetic–firefly algorithm for engineering design problems. J. Comput. Des. Eng. 2022, 9, 706–730. [Google Scholar]
- Xi, B.J.; Lei, D.M. Q-learning-based teaching-learning optimization for distributed two-stage hybrid flow shop scheduling with fuzzy processing time. Complex Syst. Model. Simul. 2022, 2, 113–129. [Google Scholar] [CrossRef]
- Fu, Y.P.; Hou, Y.S.; Wang, Z.F.; Wu, X.W.; Gao, K.Z.; Wang, L. Distributed scheduling problems in intelligent manufacturing systems. Tsinghua Sci. Technol. 2021, 26, 625–645. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, Y.Q.; Liu, J.X. Research on structure optimization and motion characteristics of wearable medical robotics based on improved particle swarm optimization algorithm. Future Gener. Comput. Syst. 2022, 129, 187–198. [Google Scholar] [CrossRef]
- Shang, K.; Ishibuchi, H.; Chen, W.Y.; Nan, Y.; Liao, W.D. Hypervolume-optimal μ-distributions on line/plane-based Pareto fronts in three dimensions. IEEE Trans. Evol. Comput. 2022, 26, 349–363. [Google Scholar] [CrossRef]
- Tan, H.Q.; Du, M.Q.; Chen, A. Accelerating the gradient projection algorithm for solving the non-additive traffic equilibrium problem with the barzilai-borwein step size. Comput. Oper. Res. 2022, 141, 105723. [Google Scholar] [CrossRef]
- Zhou, A.M.; Qu, B.Y.; Li, H.; Zhao, S.Z.; Suganthan, P.N.; Zhang, Q.F. Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm Evol. Comput. 2011, 1, 32–49. [Google Scholar] [CrossRef]
- Srinivas, N.; Deb, K. Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 1994, 2, 221–248. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Deb, K.; Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [Google Scholar] [CrossRef]
- Jain, H.; Deb, K. An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach. IEEE Trans. Evol. Comput. 2014, 18, 602–622. [Google Scholar] [CrossRef]
- Zhang, Q.F.; Li, H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 2007, 11, 712–731. [Google Scholar] [CrossRef]
- Li, K.; Deb, K.; Zhang, Q.; Kwong, S. An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput. 2015, 19, 694–716. [Google Scholar] [CrossRef]
- Liu, R.C.; Wang, R.N.; Bian, R.Y.; Liu, J.; Jiao, L.C. A decomposition-based evolutionary algorithm with correlative selection mechanism for many-objective optimization. Evol. Comput. 2021, 29, 269–304. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Cheng, R.; Zhang, X.Y.; Su, Y.S.; Jin, Y.C. A strengthened dominance relation considering convergence and diversity for evolutionary many-objective optimization. IEEE Trans. Evol. Comput. 2019, 23, 331–345. [Google Scholar] [CrossRef]
- Cheng, R.; Jin, Y.C.; Olhofer, M.; Sendhoff, B. Test problems for large-scale multiobjective and many-objective optimization. IEEE Trans. Cybern. 2017, 47, 4108–4121. [Google Scholar] [CrossRef]
- Yuan, J.W.; Liu, H.L.; Gu, F.Q.; Zhang, Q.F.; He, Z.S. Investigating the properties of indicators and an evolutionary many-objective algorithm using promising regions. IEEE Trans. Evol. Comput. 2021, 25, 75–86. [Google Scholar] [CrossRef]
- Chen, H.; Cheng, R.; Wen, J.; Li, H.; Weng, J. Solving large-scale many-objective optimization problems by covariance matrix adaptation evolution strategy with scalable small subpopulations. Inf. Sci. 2020, 509, 457–469. [Google Scholar] [CrossRef]
- Liu, Y.P.; Ishibuchi, H.; Masuyama, N.; Nojima, Y. Adapting reference vectors and scalarizing functions by growing neural gas to handle irregular pareto fronts. IEEE Trans. Evol. Comput. 2020, 24, 439–453. [Google Scholar] [CrossRef]
- Cheng, R.; Jin, Y.; Olhofer, M.; Sendhoff, B. A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 2016, 20, 773–791. [Google Scholar] [CrossRef]
- Jaimes, A.L.; Coello, C.A.C.; Aguirre, H.; Tanaka, K. Objective space partitioning using conflict information for solving many-objective problems. Inf. Sci. 2014, 268, 305–327. [Google Scholar] [CrossRef]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine learning. Addison-Wesley 1989, 1989, 36. [Google Scholar]
- Yuan, Y.; Xu, H.; Wang, B.; Yao, X. A new dominance relation-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 2016, 20, 16–37. [Google Scholar] [CrossRef]
- Fabre, M.G.; Pulido, G.T.; Coello, C.A.C. Alternative fitness assignment methods for many-objective optimization problems. In Proceedings of the 9th International Conference on Evolution Artificial, Strasbourg, France, 26–28 October 2009; pp. 146–157. [Google Scholar]
- Zhang, X.Y.; Tian, Y.; Jin, Y.C. A knee point-driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 2015, 19, 761–776. [Google Scholar] [CrossRef]
- Ishibuchi, H.; Tsukamoto, N.; Nojima, Y. Evolutionary many-objective optimization: A short review. In Proceedings of the IEEE Congress on Evolutionary Computation, Hong Kong, China, 1–6 June 2008; pp. 2419–2426. [Google Scholar]
- Laumanns, M.; Thiele, L.; Deb, K.; Zitzler, E. Combining convergence and diversity in evolutionary multiobjective optimization. Evol. Comput. 2002, 10, 263–282. [Google Scholar] [CrossRef]
- McClymont, K.; Keedwell, E. Deductive sort and climbing sort: New methods for non-dominated sorting. Evol. Comput. 2012, 20, 1–26. [Google Scholar] [CrossRef]
- Li, M.; Yang, S.; Liu, X. Shift-based density estimation for pareto-based algorithms in many-objective optimization. IEEE Trans. Evol. Comput. 2014, 18, 348–365. [Google Scholar] [CrossRef]
- Elarbi, M.; Bechikh, S.; Gupta, A.; Ben Said, L.; Ong, Y.S. A new decomposition-based NSGA-II for many-objective optimization. IEEE Trans. Syst. Man Cybern. Syst. 2018, 48, 1191–1210. [Google Scholar] [CrossRef]
- Pan, L.Q.; Xu, W.T.; Li, L.H.; He, C.; Cheng, R. Adaptive simulated binary crossover for rotated multi-objective optimization. Swarm Evol. Comput. 2021, 60, 100759. [Google Scholar] [CrossRef]
- Zhao, L.D.; Wang, B.; Jiang, X.P.; Lu, Y.C.; Hu, Y.H. DIP-MOEA: A double-grid interactive preference based multi-objective evolutionary algorithm for formalizing preferences of decision makers. Front. Inf. Technol. Electron. Eng. 2022, 23, 1714–1732. [Google Scholar] [CrossRef]
- Zheng, J.H.; Du, Z.F.; Zou, J.; Yang, S.X. A weight vector generation method based on normal distribution for preference-based multi-objective optimization. Swarm Evol. Comput. 2023, 77, 101250. [Google Scholar] [CrossRef]
- Ben Said, L.; Bechikh, S.; Ghedira, K. The r-dominance: A new dominance relation for interactive evolutionary multicriteria decision making. IEEE Trans. Evol. Comput. 2010, 14, 801–818. [Google Scholar] [CrossRef]
- Wang, F.; Li, Y.X.; Zhang, H.; Hu, T.; Shen, X.L. An adaptive weight vector guided evolutionary algorithm for preference-based multi-objective optimization. Swarm Evol. Comput. 2019, 49, 220–233. [Google Scholar] [CrossRef]
- He, Z.; Yen, G.G. Many-objective evolutionary algorithms based on coordinated selection strategy. IEEE Trans. Evol. Comput. 2017, 21, 220–233. [Google Scholar] [CrossRef]
- Gong, D.; Sun, F.; Sun, J.; Sun, X. Set-based many-objective optimization guided by a preferred region. Neurocomputing 2017, 228, 241–255. [Google Scholar] [CrossRef]
- Hou, Z.; He, C.; Cheng, R. Reformulating preferences into constraints for evolutionary multi- and many-objective optimization. Inf. Sci. 2020, 514, 1–15. [Google Scholar] [CrossRef]
- Ke, L.J.; Zhang, Q.F.; Battiti, R. MOEA/D-ACO: A multiobjective evolutionary algorithm using decomposition and ant colony. IEEE Trans. Cybern. 2013, 43, 1845–1859. [Google Scholar] [CrossRef] [PubMed]
- Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. 1996, 26, 29–41. [Google Scholar] [CrossRef]
- Jiao, R.W.; Zeng, S.Y.; Li, C.H.; Ong, Y.S. Two-type weight adjustments in MOEA/D for highly constrained many-objective optimization. Inf. Sci. 2021, 578, 592–614. [Google Scholar] [CrossRef]
- Peng, H.; Wang, C.; Han, Y.P.; Xiao, W.H.; Zhou, X.Y.; Wu, Z.J. Micro multi-strategy multi-objective artificial bee colony algorithm for microgrid energy optimization. Future Gener. Comput. Syst. 2022, 131, 59–74. [Google Scholar] [CrossRef]
- Xu, H.; Zeng, W.H.; Zhang, D.F.; Zeng, X.X. MOEA/HD: A multiobjective evolutionary algorithm based on hierarchical decomposition. IEEE Trans. Cybern. 2019, 49, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, G.G.; Li, K.; Yeh, W.C.; Jian, M.; Dong, J. Enhancing MOEA/D with information feedback models for large-scale many-objective optimization. Inf. Sci. 2020, 522, 1–16. [Google Scholar] [CrossRef]
- Jiang, S.; Ong, Y.S.; Zhang, J.; Feng, L. Consistencies and contradictions of performance metrics in multiobjective optimization. IEEE Trans. Cybern. 2014, 44, 2391–2404. [Google Scholar] [CrossRef]
- Zitzler, E.; Kunzli, S. Indicator-based selection in multiobjective search. In Proceedings of the Parallel Problem Solving from Nature, Birmingham, UK, 18–22 September 2004; pp. 832–842. [Google Scholar]
- Bader, J.; Zitzler, E. HypE: An algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 2011, 19, 45–76. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, D.; Sun, J.; Jin, Y. A many-objective evolutionary algorithm using a one-by-one selection strategy. IEEE Trans. Cybern. 2017, 47, 2689–2702. [Google Scholar] [CrossRef]
- Cai, X.; Sun, H.; Fan, Z. A diversity indicator based on reference vectors for many-objective optimization. Inf. Sci. 2018, 430–431, 467–486. [Google Scholar] [CrossRef]
- Sun, Y.; Yen, G.G.; Yi, Z. IGD indicator-based evolutionary algorithm for many-objective optimization problems. IEEE Trans. Evol. Comput. 2018, 23, 173–187. [Google Scholar] [CrossRef]
- Liang, Z.P.; Hu, K.F.; Ma, X.L.; Zhu, Z.X. A many-objective evolutionary algorithm based on a two-round selection strategy. IEEE Trans. Cybern. 2021, 51, 1417–1429. [Google Scholar] [CrossRef]
- Ma, X.L.; Liu, F.; Qi, Y.T.; Wang, X.D.; Li, L.L.; Jiao, L.C.; Yin, M.L.; Gong, M.G. A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables. IEEE Trans. Evol. Comput. 2016, 20, 275–298. [Google Scholar] [CrossRef]
- Mandavi, S.; Shiri, M.E.; Rahnamayan, S. Metaheuristics in large-scale global continues optimization: A survey. Inf. Sci. 2015, 295, 407–428. [Google Scholar] [CrossRef]
- Ma, L.B.; Huang, M.; Yang, S.X.; Wang, R.; Wang, X.W. An adaptive localized decision variable analysis approach to large-scale multiobjective and many-objective optimization. IEEE Trans. Cybern. 2022, 52, 6684–6696. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, X.J.; Sun, S.L. A Reinforcement Learning Level-based Particle Swarm Optimization Algorithm for Large-scale Optimization. Inf. Sci. 2022, 602, 298–312. [Google Scholar] [CrossRef]
- Gu, Z.M.; Wang, G.G. Improving NSGA-III algorithms with information feedback models for large-scale many-objective optimization. Future Gener. Comput. Syst. 2020, 107, 49–69. [Google Scholar] [CrossRef]
- Xiang, Y.; Zhou, Y.; Li, M.; Chen, Z. A vector angle-based evolutionary algorithm for unconstrained many-objective optimization. IEEE Trans. Evol. Comput. 2017, 21, 131–152. [Google Scholar] [CrossRef]
- Tizhoosh, H.R. Opposition-based learning: A new scheme for machine intelligence. In Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation, Vienna, Austria, 28–30 November 2005; pp. 695–701. [Google Scholar]
- Chen, B.L.; Zeng, W.H.; Lin, Y.B.; Zhang, D.F. A new local search-based multiobjective optimization algorithm. IEEE Trans. Evol. Comput. 2015, 19, 50–73. [Google Scholar] [CrossRef]
- Gao, S.C.; Yu, Y.; Wang, Y.R.; Wang, J.H.; Cheng, J.J.; Zhou, M.C. Chaotic local search-based differential evolution algorithms for optimization. IEEE Trans. Syst. Man Cybern. 2021, 51, 3954–3967. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, S.; Chen, J.; Yin, M. SCCWalk: An efficient local search algorithm and its improvements for maximum weight clique problem. Artif. Intell. 2020, 280, 103230. [Google Scholar] [CrossRef]
- Deb, K. Multi-objective genetic algorithms: Problem difficulties and construction of test problems. Evol. Comput. 1999, 7, 205–230. [Google Scholar] [CrossRef] [PubMed]
- Menchaca-Mendez, A.; Coello, C.A.C. GDE-MOEA: A new MOEA based on the generational distance indicator and e-dominance. In Proceedings of the IEEE Congress on Evolutionary Computation, Sendai, Japan, 25–28 May 2015; pp. 947–955. [Google Scholar]
- Tian, Y.; Zhang, X.Y.; Cheng, R.; Jin, Y.C. A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric. In Proceedings of the IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada, 24–29 July 2016; pp. 5222–5229. [Google Scholar]
- Ishibuchi, H.; Imada, R.; Setoguchi, Y.; Nojima, Y. Reference point specification in inverted generational distance for triangular linear pareto front. IEEE Trans. Evol. Comput. 2018, 22, 961–975. [Google Scholar] [CrossRef]
- Deb, K.; Jain, S. Running performance metrics for evolutionary multi-objective optimization. In Proceedings of the Fourth Asia-Pacific Conference on Simulated Evolution and Learning, Singapore, 18–22 November 2002; pp. 13–20. [Google Scholar]
Problems | PF | PS | Modality | Separability |
---|---|---|---|---|
LSMOP1 | linear | unimodal | fully separable | |
LSMOP2 | linear | mixed | partially separable | |
LSMOP3 | linear | multimodal | mixed | |
LSMOP4 | linear | mixed | mixed | |
LSMOP5 | convex | unimodal | fully separable | |
LSMOP6 | convex | mixed | partially separable | |
LSMOP7 | convex | multimodal | mixed | |
LSMOP8 | convex | mixed | mixed | |
LSMOP9 | disconnected | mixed | fully separable |
M | NSGA-II/SDR | NSGA-II/SDR-OLS | M | NSGA-II/SDR | NSGA-II/SDR-OLS | M | NSGA-II/SDR | NSGA-II/SDR-OLS | |
---|---|---|---|---|---|---|---|---|---|
LSMOP1 | 3 | () - | () | 5 | () - | () | 8 | () - | () |
LSMOP2 | 3 | () + | () | 5 | () + | () | 8 | () + | () |
LSMOP3 | 3 | ( ) - | ( ) | 5 | ( ) - | ( ) | 8 | ( ) - | ( ) |
LSMOP3 | 3 | ( ) - | ( ) | 5 | ( ) - | ( ) | 8 | ( ) - | ( ) |
LSMOP4 | 3 | ( ) + | ( ) | 5 | ( ) + | ( ) | 8 | ( ) + | ( ) |
LSMOP5 | 3 | ( ) - | ( ) | 5 | ( ) - | ( ) | 8 | ( ) - | ( ) |
LSMOP6 | 3 | ( ) - | ( ) | 5 | ( ) - | ( ) | 8 | ( ) - | ( ) |
LSMOP7 | 3 | ( ) - | ( ) | 5 | ( ) - | ( ) | 8 | ( ) - | ( ) |
LSMOP8 | 3 | ( ) - | ( ) | 5 | ( ) - | ( ) | 8 | ( ) - | ( ) |
LSMOP9 | 3 | ( ) - | ( ) | 5 | ( ) - | ( ) | 8 | ( ) - | ( ) |
M | NSGA-II/SDR | NSGA-II/SDR-OLS | M | NSGA-II/SDR | NSGA-II/SDR-OLS | M | NSGA-II/SDR | NSGA-II/SDR-OLS | |
---|---|---|---|---|---|---|---|---|---|
LSMOP1 | 10 | ( ) | ( ) | 12 | ( ) | ( ) | 15 | ( ) | ( ) |
LSMOP2 | 10 | ( ) | ( ) | 12 | ( ) | ( ) | 15 | ( ) + | ( ) |
LSMOP3 | 10 | ( ) - | ( ) | 12 | ( ) - | ( ) | 15 | ( ) - | ( ) |
LSMOP4 | 10 | ( ) + | ( ) | 12 | ( ) + | ( ) | 15 | ( ) + | ( ) |
LSMOP5 | 10 | ( ) - | ( ) | 12 | ( ) - | ( ) | 15 | ( ) - | ( ) |
LSMOP6 | 10 | ( ) - | ( ) | 12 | ( ) - | ( ) | 15 | ( ) - | ( ) |
LSMOP7 | 10 | ( ) - | ( ) | 12 | ( ) - | ( ) | 15 | ( ) - | ( ) |
LSMOP8 | 10 | ( ) - | ( ) | 12 | ( ) - | ( ) | 15 | ( ) - | ( ) |
LSMOP9 | 10 | ( ) - | ( ) | 12 | ( ) - | ( ) | 15 | ( ) - | ( ) |
M | NSGA-II/SDR | NSGA-II/SDR-OLS | M | NSGA-II/SDR | NSGA-II/SDR-OLS | M | NSGA-II/SDR | NSGA-II/SDR-OLS | |
---|---|---|---|---|---|---|---|---|---|
LSMOP1 | 3 | ( ) + | ( ) | 5 | ( ) + | ( ) | 8 | ( ) + | ( ) |
LSMOP2 | 3 | ( ) + | ( ) | 5 | ( ) = | ( ) | 8 | ( ) = | ( ) |
LSMOP3 | 3 | ( ) - | ( ) | 5 | ( ) + | ( ) | 8 | ( ) + | ( ) |
LSMOP4 | 3 | ( ) + | ( ) | 5 | ( ) = | ( ) | 8 | ( ) = | ( ) |
LSMOP5 | 3 | ( ) - | ( ) | 5 | ( ) - | ( ) | 8 | ( ) - | ( ) |
LSMOP6 | 3 | ( ) - | ( ) | 5 | ( ) - | ( ) | 8 | ( ) - | ( ) |
LSMOP7 | 3 | ( ) + | ( ) | 5 | ( ) - | ( ) | 8 | ( ) - | ( ) |
LSMOP8 | 3 | ( ) - | ( ) | 5 | ( ) - | ( ) | 8 | ( ) - | ( ) |
LSMOP9 | 3 | ( ) - | ( ) | 5 | ( ) - | ( ) | 8 | ( ) + | ( ) |
M | NSGA-II/SDR | NSGA-II/SDR-OLS | M | NSGA-II/SDR | NSGA-II/SDR-OLS | M | NSGA-II/SDR | NSGA-II/SDR-OLS | |
---|---|---|---|---|---|---|---|---|---|
LSMOP1 | 10 | ( ) + | ( ) | 12 | ( ) + | ( ) | 15 | ( ) + | ( ) |
LSMOP2 | 10 | ( ) - | ( ) | 12 | ( ) = | ( ) | 15 | ( ) = | ( ) |
LSMOP3 | 10 | ( ) + | ( ) | 12 | ( ) + | ( ) | 15 | ( ) + | ( ) |
LSMOP4 | 10 | ( ) - | ( ) | 12 | ( ) - | ( ) | 15 | ( ) = | ( ) |
LSMOP5 | 10 | ( ) - | ( ) | 12 | ( ) - | ( ) | 15 | ( ) = | ( ) |
LSMOP6 | 10 | ( ) = | ( ) | 12 | ( ) - | ( ) | 15 | ( ) - | ( ) |
LSMOP7 | 10 | ( ) - | ( ) | 12 | ( ) - | ( ) | 15 | ( ) - | ( ) |
LSMOP8 | 10 | ( ) - | ( ) | 12 | ( ) - | ( ) | 15 | ( ) = | ( ) |
LSMOP9 | 10 | ( ) = | ( ) | 12 | ( ) - | ( ) | 15 | ( ) - | ( ) |
M | PREA | S3-CMA-ES | DEA-GNG | RVEA | NSGA-II-conflict | NSGA-III | NSGA-II/SDR-OLS | |
---|---|---|---|---|---|---|---|---|
LSMOP1 | 3 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP2 | 3 | ( ) + | ( ) - | ( ) + | ( ) + | ( ) - | ( ) + | ( ) |
LSMOP3 | 3 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP4 | 3 | ( ) + | ( ) - | ( ) + | ( ) + | ( ) - | ( ) + | ( ) |
LSMOP5 | 3 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP6 | 3 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP7 | 3 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP8 | 3 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP9 | 3 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
M | PREA | S3-CMA-ES | DEA-GNG | RVEA | NSGA-II-conflict | NSGA-III | NSGA-II/SDR-OLS | |
---|---|---|---|---|---|---|---|---|
LSMOP1 | 3 | ( ) + | ( ) - | ( ) = | ( ) - | ( ) - | ( ) = | ( ) |
LSMOP2 | 3 | ( ) + | ( ) - | ( ) + | ( ) = | ( ) - | ( ) = | ( ) |
LSMOP3 | 3 | ( ) + | ( ) - | ( ) + | ( ) + | ( ) - | ( ) + | ( ) |
LSMOP4 | 3 | ( ) + | ( ) - | ( ) + | ( ) + | ( ) - | ( ) + | ( ) |
LSMOP5 | 3 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP6 | 3 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP7 | 3 | ( ) + | ( ) = | ( ) + | ( ) + | ( ) + | ( ) + | ( ) |
LSMOP8 | 3 | ( ) + | ( ) = | ( ) + | ( ) + | ( ) = | ( ) + | ( ) |
LSMOP9 | 3 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
M | PREA | S3-CMA-ES | DEA-GNG | RVEA | NSGA-II-conflict | NSGA-III | NSGA-II/SDR-OLS | |
---|---|---|---|---|---|---|---|---|
LSMOP1 | 5 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP2 | 5 | ( ) + | ( ) - | ( ) + | ( ) + | ( ) - | ( ) + | ( ) |
LSMOP3 | 5 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP4 | 5 | ( ) + | ( ) - | ( ) + | ( ) + | ( ) - | ( ) + | ( ) |
LSMOP5 | 5 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP6 | 5 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP7 | 5 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP8 | 5 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP9 | 5 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
M | PREA | S3-CMA-ES | DEA-GNG | RVEA | NSGA-II-conflict | NSGA-III | NSGA-II/SDR-OLS | |
---|---|---|---|---|---|---|---|---|
LSMOP1 | 5 | ( ) + | ( ) - | ( ) + | ( ) + | ( ) - | ( ) - | ( ) |
LSMOP2 | 5 | ( ) - | ( ) - | ( ) + | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP3 | 5 | ( ) + | ( ) - | ( ) + | ( ) + | ( ) - | ( ) + | ( ) |
LSMOP4 | 5 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP5 | 5 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP6 | 5 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP7 | 5 | ( ) - | ( ) - | ( ) - | ( ) + | ( ) - | ( ) - | ( ) |
LSMOP8 | 5 | ( ) - | ( ) = | ( ) - | ( ) = | ( ) - | ( ) - | ( ) |
LSMOP9 | 5 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
M | PREA | S3-CMA-ES | DEA-GNG | RVEA | NSGA-II-conflict | NSGA-III | NSGA-II/SDR-OLS | |
---|---|---|---|---|---|---|---|---|
LSMOP1 | 8 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP2 | 8 | ( ) + | ( ) - | ( ) = | ( ) + | ( ) - | ( ) + | ( ) |
LSMOP3 | 8 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP4 | 8 | ( ) + | ( ) - | ( ) + | ( ) + | ( ) - | ( ) + | ( ) |
LSMOP5 | 8 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP6 | 8 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP7 | 8 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP8 | 8 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP9 | 8 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
M | PREA | S3-CMA-ES | DEA-GNG | RVEA | NSGA-II-conflict | NSGA-III | NSGA-II/SDR-OLS | |
---|---|---|---|---|---|---|---|---|
LSMOP1 | 8 | ( ) - | ( ) - | ( ) = | ( ) + | ( ) - | ( ) - | ( ) |
LSMOP2 | 8 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP3 | 8 | ( ) - | ( ) - | ( ) - | ( ) + | ( ) - | ( ) - | ( ) |
LSMOP4 | 8 | ( ) - | ( ) + | ( ) + | ( ) + | ( ) - | ( ) - | ( ) |
LSMOP5 | 8 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP6 | 8 | ( ) - | ( ) = | ( ) - | ( ) + | ( ) - | ( ) - | ( ) |
LSMOP7 | 8 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP8 | 8 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP9 | 8 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
M | PREA | S3-CMA-ES | DEA-GNG | RVEA | NSGA-II-conflict | NSGA-III | NSGA-II/SDR-OLS | |
---|---|---|---|---|---|---|---|---|
LSMOP1 | 10 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP2 | 10 | ( ) = | ( ) - | ( ) - | ( ) + | ( ) - | ( ) = | ( ) |
LSMOP3 | 10 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP4 | 10 | ( ) + | ( ) - | ( ) = | ( ) + | ( ) - | ( ) + | ( ) |
LSMOP5 | 10 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP6 | 10 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP7 | 10 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP8 | 10 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP9 | 10 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
M | PREA | S3-CMA-ES | DEA-GNG | RVEA | NSGA-II-conflict | NSGA-III | NSGA-II/SDR-OLS | |
---|---|---|---|---|---|---|---|---|
LSMOP1 | 10 | ( ) - | ( ) - | ( ) - | ( ) + | ( ) - | ( ) - | ( ) |
LSMOP2 | 10 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP3 | 10 | ( ) - | ( ) - | ( ) - | ( ) + | ( ) - | ( ) - | ( ) |
LSMOP4 | 10 | ( ) - | ( ) = | ( ) + | ( ) + | ( ) = | ( ) - | ( ) |
LSMOP5 | 10 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP6 | 10 | ( ) - | ( ) - | ( ) - | ( ) + | ( ) - | ( ) - | ( ) |
LSMOP7 | 10 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP8 | 10 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP9 | 10 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
M | PREA | S3-CMA-ES | DEA-GNG | RVEA | NSGA-II-conflict | NSGA-III | NSGA-II/SDR-OLS | |
---|---|---|---|---|---|---|---|---|
LSMOP1 | 12 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP2 | 12 | ( ) = | ( ) - | ( ) = | ( ) + | ( ) - | ( ) = | ( ) |
LSMOP3 | 12 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP4 | 12 | ( ) + | ( ) - | ( ) + | ( ) + | ( ) - | ( ) + | ( ) |
LSMOP5 | 12 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP6 | 12 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP7 | 12 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP8 | 12 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP9 | 12 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
M | PREA | S3-CMA-ES | DEA-GNG | RVEA | NSGA-II-conflict | NSGA-III | NSGA-II/SDR-OLS | |
---|---|---|---|---|---|---|---|---|
LSMOP1 | 12 | ( ) - | ( ) - | ( ) - | ( ) + | ( ) - | ( ) - | ( ) |
LSMOP2 | 12 | ( ) - | ( ) - | ( ) - | ( ) = | ( ) - | ( ) - | ( ) |
LSMOP3 | 12 | ( ) - | ( ) - | ( ) - | ( ) + | ( ) - | ( ) - | ( ) |
LSMOP4 | 12 | ( ) - | ( ) - | ( ) + | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP5 | 12 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP6 | 12 | ( ) - | ( ) = | ( ) - | ( ) + | ( ) - | ( ) - | ( ) |
LSMOP7 | 12 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP8 | 12 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP9 | 12 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
M | PREA | S3-CMA-ES | DEA-GNG | RVEA | NSGA-II-conflict | NSGA-III | NSGA-II/SDR-OLS | |
---|---|---|---|---|---|---|---|---|
LSMOP1 | 15 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP2 | 15 | ( ) = | ( ) - | ( ) - | ( ) - | ( ) - | ( ) + | ( ) |
LSMOP3 | 15 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP4 | 15 | ( ) = | ( ) - | ( ) - | ( ) - | ( ) - | ( ) + | ( ) |
LSMOP5 | 15 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP6 | 15 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP7 | 15 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP8 | 15 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP9 | 15 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
M | PREA | S3-CMA-ES | DEA-GNG | RVEA | NSGA-II-conflict | NSGA-III | NSGA-II/SDR-OLS | |
---|---|---|---|---|---|---|---|---|
LSMOP1 | 15 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP2 | 15 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP3 | 15 | ( ) + | ( ) - | ( ) + | ( ) + | ( ) = | ( ) + | ( ) |
LSMOP4 | 15 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP5 | 15 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP6 | 15 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
LSMOP7 | 15 | ( ) - | ( ) - | ( ) - | ( ) + | ( ) - | ( ) - | ( ) |
LSMOP8 | 15 | ( ) - | ( ) - | ( ) - | ( ) + | ( ) - | ( ) - | ( ) |
LSMOP9 | 15 | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) - | ( ) |
PREA | S3-CMA-ES | DEA-GNG | RVEA | NSGA-II-Conflict | NSGA-III | NSGA-II/SDR | NSGA-II/SDR-OLS | |
---|---|---|---|---|---|---|---|---|
Friedman rank (Mean) | 4.67 | 8.00 | 6.33 | 3.78 | 5.33 | 4.22 | 2.00 | 1.67 |
Final rank (Mean) | 5 | 8 | 7 | 3 | 6 | 4 | 2 | 1 |
Friedman rank (Std) | 4.44 | 7.89 | 6.22 | 4.67 | 4.56 | 4.11 | 2.89 | 1.22 |
Final rank (Std) | 4 | 8 | 7 | 6 | 5 | 3 | 2 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, G.; Wang, H. NSGA-II/SDR-OLS: A Novel Large-Scale Many-Objective Optimization Method Using Opposition-Based Learning and Local Search. Mathematics 2023, 11, 1911. https://doi.org/10.3390/math11081911
Zhang Y, Wang G, Wang H. NSGA-II/SDR-OLS: A Novel Large-Scale Many-Objective Optimization Method Using Opposition-Based Learning and Local Search. Mathematics. 2023; 11(8):1911. https://doi.org/10.3390/math11081911
Chicago/Turabian StyleZhang, Yingxin, Gaige Wang, and Hongmei Wang. 2023. "NSGA-II/SDR-OLS: A Novel Large-Scale Many-Objective Optimization Method Using Opposition-Based Learning and Local Search" Mathematics 11, no. 8: 1911. https://doi.org/10.3390/math11081911
APA StyleZhang, Y., Wang, G., & Wang, H. (2023). NSGA-II/SDR-OLS: A Novel Large-Scale Many-Objective Optimization Method Using Opposition-Based Learning and Local Search. Mathematics, 11(8), 1911. https://doi.org/10.3390/math11081911