Superposition Formulas and Evolution Behaviors of Multi-Solutions to the (3+1)-Dimensional Generalized Shallow Water Wave-like Equation
Abstract
:1. Introduction
2. Mixed Solutions between Two Arbitrary Functions and the Multi-Kink Solitons of the GSWWLE
3. Multi-Localized Wave Solutions and Interaction Solutions of the GSWWLE
3.1. Multi-Localized Wave Solutions
3.2. Interaction Solutions between the Multi-Localized Wave Solutions and the Multi-Arbitrary Function Solutions of the GSWWLE
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lü, X.; Ma, W.X.; Yu, J.; Khalique, C.M. Solitary waves with the Madelung fluid description: A generalized derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simulat. 2016, 31, 40–46. [Google Scholar] [CrossRef]
- Sun, H.Q.; Zhu, Z.N. Darboux Transformation and Soliton Solution of the Nonlocal Generalized Sasa–Satsuma Equation. Mathematics 2023, 11, 865. [Google Scholar] [CrossRef]
- Hossen, M.B.; Roshid, H.O.; Ali, M.Z. Multi-soliton, breathers, lumps and interaction solution to the (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov equation. Heliyon 2019, 5, e02548. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.E.; Chen, Y. General high-order rogue waves to nonlinear Schrödinger-Boussinesq equation with the dynamical analysis. Nonlinear Dyn. 2018, 93, 2169–2184. [Google Scholar] [CrossRef]
- Feng, Y.Y.; Bilige, S.D. Multiple rogue wave solutions of (2+1) dimensional YTSF equation via Hirota bilinear method. Wave Random Complex 2021. [Google Scholar] [CrossRef]
- Souleymanou, A.; Mukam, S.P.; Houwe, A.; Kuetche, V.K.; Mustafa, I.; Serge, D.Y.; Almohsen, B.; Bouetou, T.B. Controllable rational solutions in nonlinear optics fibers. Eur. Phys. J. Plus 2020, 135, 633. [Google Scholar]
- Yusuf, A.; Sulaiman, T.A.; Alshomrani, A.S.; Baleanu, D. Breather and lump-periodic wave solutions to a system of nonlinear wave model arising in fluid mechanics. Nonlinear Dyn. 2022, 110, 3655–3669. [Google Scholar] [CrossRef]
- Liu, J.G.; Wazwaz, A.M. Breather wave and lump-type solutions of new (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation in incompressible fluid. Math. Method Appl. Sci. 2021, 44, 2200–2208. [Google Scholar] [CrossRef]
- Ma, W.X. Lump solutions to the Kadomtsev-Petviashvili equation. Phys. Lett. A 2015, 36, 1975–1978. [Google Scholar] [CrossRef]
- Kaur, L.; Wazwaz, A.M. Dynamical analysis of lump solutions for (3+1) dimensional generalized KP-Boussinesq equation and Its dimensionally reduced equations. Phys. Scr. 2018, 93, 075203. [Google Scholar] [CrossRef]
- Feng, Y.Y.; Bilige, S.D. Multi-breather, multi-lump and hybrid solutions to a novel KP-like equation. Nonlinear Dyn. 2021, 106, 879–890. [Google Scholar] [CrossRef]
- Parvizi, M.; Khodadadian, A.; Eslahchi, M.R. A mixed finite element method for solving coupled wave equation of Kirchhoff type with nonlinear boundary damping and memory term. Math. Method Appl. Sci. 2021, 44, 12500–12521. [Google Scholar] [CrossRef]
- Abbaszadeh, M.; Dehghan, M.; Khodadadian, A.; Noii, N.; Heitzinger, C.; Wick, T. A reduced-order variational multiscale interpolating element free Galerkin technique based on proper orthogonal decomposition for solving Navier–Stokes equations coupled with a heat transfer equation: Nonstationary incompressible Boussinesq equations. J. Comput. Phys. 2021, 426, 109875. [Google Scholar] [CrossRef]
- Huang, L.L.; Chen, Y. Localized excitations and interactional solutions for the reduced Maxwell-Bloch equations. Commun. Nonlinear Sci. Numer. Simulat. 2019, 67, 237–252. [Google Scholar] [CrossRef]
- Zhou, Y.F.; Wang, C.J.; Zhang, X.X. Rational localized waves and their absorb-emit interactions in the (2+1)-dimensional Hirota-Satsuma-Ito equation. Mathematics 2020, 8, 1807. [Google Scholar] [CrossRef]
- Souleymanou, A.; Alphonse, H.; Mukam, S.P.; Mustafa, I.; Serge, D.Y.; Bouetou, T.B. Miscellaneous optical solitons in magneto-optic waveguides associated to the influence of the cross-phase modulation in instability spectra. Phys. Scr. 2021, 96, 045216. [Google Scholar]
- Akinyemi, L.; Senol, M.; Akpan, U.; Oluwasegun, K. The optical soliton solutions of generalized coupled nonlinear Schrödinger-Korteweg-de Vries equations. Opt. Quantum Electron. 2021, 53, 394. [Google Scholar] [CrossRef]
- Hoque, M.F.; Roshid, H.O. Optical soliton solutions of the Biswas-Arshed model by the tan (⊝/2) expansion approach. Phys. Scr. 2020, 95, 075219. [Google Scholar] [CrossRef]
- Souleymanou, A.; Alphonse, H.; Rezazadeh, H.; Bekir, A.; Bouetou, T.B.; Crépin, K.T. Optical soliton to multi-core (coupling with all the neighbors) directional couplers and modulation instability. Eur. Phys. J. Plus 2021, 136, 325. [Google Scholar]
- Alam1, M.N.; Akbar, M.A.; Roshid, H.O. Traveling wave solutions of the Boussinesq equation via the new approach of generalized (G’/G)-expansion method. SpringerPlus 2014, 3, 43. [Google Scholar] [CrossRef]
- Eslami, M.; Rezazadeh, H. The first integral method for Wu-Zhang system with conformable time-fractional derivative. Calcolo 2016, 53, 475–485. [Google Scholar] [CrossRef]
- Lü, J.Q.; Bilige, S.D.; Chaolu, T.M. The study of lump solution and interaction phenomenon to (2+1)-dimensional generalized fifth-order kdv equation. Nonlinear Dyn. 2018, 91, 1669–1676. [Google Scholar] [CrossRef]
- Manafian, J.; Lakestani, M. Interaction among a lump, periodic waves, and kink solutions to the fractional generalized CBS-BK equation. Math. Appl. Sci. 2021, 44, 1052–1070. [Google Scholar] [CrossRef]
- Zhang, R.F.; Bilige, S.D. Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 2019, 95, 3041–3048. [Google Scholar] [CrossRef]
- Ullah, M.S.; Ali, M.Z.; Roshid, H.O.; Seadawy, A.R.; Baleanu, D. Collision phenomena among lump, periodic and soliton solutions to a (2+1)-dimensional Bogoyavlenskii’s breaking soliton model. Phys. Lett. A 2021, 397, 127263. [Google Scholar] [CrossRef]
- Ma, W.X. N-soliton solution and the Hirota condition of a (2+1)-dimensional combined equation. Math. Comput. Simulat. 2021, 190, 270–279. [Google Scholar] [CrossRef]
- Ma, W.X. Riemann–Hilbert problems and soliton solutions of type (λ*, –λ*) reduced nonlocal integrable mKdV hierarchies. Mathematics 2022, 10, 870. [Google Scholar] [CrossRef]
- Hao, X.H.; Lou, S.Y. Decompositions and linear superpositions of B-type Kadomtsev-Petviashvili equations. Math. Method Appl. Sci. 2022, 45, 5774. [Google Scholar] [CrossRef]
- Kuo, C.K.; Ma, W.X. A study on resonant multi-soliton solutions to the (2+1)-dimensional Hirota-Satsuma-Ito equations via the linear superposition principle. Nonlinear Anal. 2020, 190, 111592. [Google Scholar] [CrossRef]
- Liu, J.G. Lump-type solutions and interaction solutions for the (2+1)-dimensional generalized fifth-order KdV equation. Appl. Math. Lett. 2018, 86, 36–41. [Google Scholar] [CrossRef]
- Fang, T.; Wang, H.; Wang, Y.H.; Ma, W.X. High-order lump-type solutions and their interaction solutions to a (3+1)-dimensional nonlinear evolution equation. Commun. Theor. Phys. 2019, 71, 927–934. [Google Scholar] [CrossRef]
- Feng, Y.Y.; Bilige, S.D.; Wang, X.M. Diverse exact analytical solutions and novel interaction solutions for the (2+1)-dimensional Ito equation. Phys. Scr. 2020, 95, 095201. [Google Scholar] [CrossRef]
- Wang, X.M.; Bilige, S.D. Novel interaction phenomena of the (3+1)-dimensional Jimbo-Miwa equation. Commun. Theor. Phys. 2020, 72, 045001. [Google Scholar] [CrossRef]
- Wang, X.M.; Bilige, S.D.; Pang, J. Rational solutions and their interaction solutions of the (3+1)-dimensional Jimbo-Miwa equation. Adv. Math. Phys. 2020, 2020, 9260986. [Google Scholar] [CrossRef]
- Han, P.F.; Bao, T.G.T.S. Bäcklund transformation and some different types of N-soliton solutions to the (3+1)-dimensional generalized nonlinear evolution equation for the shallow-water waves. Math. Method Appl. Sci. 2021, 44, 11307–11323. [Google Scholar] [CrossRef]
- Zhang, L.L.; Yu, J.P.; Ma, W.X.; Khalique, C.M.; Sun, Y.L. Localized solutions of (5+1)-dimensional evolution equations. Nonlinear Dyn. 2021, 104, 4317–4327. [Google Scholar] [CrossRef]
- Sun, Y.L.; Ma, W.X.; Yu, J.P.; Khalique, C.M. Dynamics of lump solitary wave of Kadomtsev-Petviashvili-Boussinesq-like equation. Comput. Math. Appl. 2019, 78, 840–847. [Google Scholar] [CrossRef]
- Gai, L.T.; Ma, W.X.; Li, M.C. Lump-type solution and breather lump–kink interaction phenomena to a (3+1)-dimensional GBK equation based on trilinear form. Nonlinear Dyn. 2020, 100, 2715–2727. [Google Scholar] [CrossRef]
- Lü, X.; Chen, S.J. Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms one-lump-multi-stripe and one-lump-multi-soliton types. Nonlinear Dyn. 2021, 103, 947–977. [Google Scholar] [CrossRef]
- Alshammari, F.S.; Hoque, M.F.; Roshid, H.O. Dynamical solitary interactions between lump waves and different forms of n-solitons (n+1) for the (2+1)-dimensional shallow water wave equation. Partial. Differ. Equ. Appl. Math. 2021, 3, 100026. [Google Scholar] [CrossRef]
- Miao, Z.W.; Hu, X.R.; Chen, Y. Interaction phenomenon to (1+1)-dimensiona Sharma-Tasso-Olver-Burgers equation. Appl. Math. Lett. 2021, 112, 106722. [Google Scholar] [CrossRef]
- Li, L.X. Evolution behaviour of kink breathers and lump-solitons (M→∞) for the (3+1)-dimensional Hirota-Satsuma-Ito-like equation. Nonlinear Dyn. 2022, 107, 3779–3790. [Google Scholar] [CrossRef]
- Guo, Y.F.; Guo, C.X.; Li, D.L. The lump solutions for the (2+1)-dimensional Nizhnik-Novikov-Veselov equations. Appl. Math. Lett. 2021, 21, 107427. [Google Scholar] [CrossRef]
- Ayca, A.; Lynett, P.J. Modeling the motion of large vessels due to tsunami-induced currents. Ocean Eng. 2021, 236, 109487. [Google Scholar] [CrossRef]
- Clarkson, P.A.; Mansfield, E.L. On a shallow water wave equation. Nonlinearity 1994, 7, 915–1000. [Google Scholar] [CrossRef]
- Shen, Y.; Tian, B.; Liu, S.H.; Zhou, T.Y. Studies on certain bilinear form, N-soliton, higher-order breather, periodic-wave and hybrid solutions to a (3+1)-dimensional shallow water wave equation with time-dependent coefficients. Nonlinear Dyn. 2022, 108, 2447–2460. [Google Scholar] [CrossRef]
- Jimbo, M.; Miwa, T. Solitons and infinite dimensional lie algebras. Publ. Res. Inst. Math. Sci. 1983, 19, 943–1001. [Google Scholar] [CrossRef]
- Tian, B.; Gao, Y.T. Beyond travelling waves: A new algorithm for solving nonlinear evolution equations. Comput. Phys. Commun. 1996, 95, 139–142. [Google Scholar] [CrossRef]
- Tian, B.; Gao, Y.T. Generalized tanh method and four families of soliton-Like solutions for a generalized shallow water wave equation. Z. Naturforsch. 1996, 51, 171–174. [Google Scholar] [CrossRef]
- Gao, Y.T.; Tian, B.; Hong, W. Particular solutions for a (3+1)-dimensional generalized shallow water wave equation. Z. Naturforsch. 1998, 53, 806–807. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, D. Analytical soliton solutions to the generalized (3+1)-dimensional shallow water wave equation. Mod. Phys. Lett. B 2022, 36, 2150540. [Google Scholar] [CrossRef]
- Liu, J.G.; Zhu, W.H.; Zhou, L.; He, Y. Explicit and exact non-traveling wave solutions of (3+1)-dimensional generalized shallow water equation. J. Appl. Anal. Comput. 2019, 9, 2381–2388. [Google Scholar] [CrossRef]
- Liu, J.G.; Zeng, Z.F.; He, Y.; Ai, G.P. A Class of exact solution of (3+1)-dimensional generalized shallow water equation system. Int. J. Nonlinear Sci. Num. 2015, 16, 43–48. [Google Scholar] [CrossRef]
- Zayed, E.M.E. Traveling wave solutions for higher dimensional nonlinear evolution equations using the (G′/G)-expansion method. J. Appl. Math. Inform. 2010, 28, 383–395. [Google Scholar]
- Liu, J.G.; He, Y. New periodic solitary wave solutions for the (3+1)-dimensional generalized shallow water equation. Nonlinear Dyn. 2017, 90, 363–369. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, S. Some new periodic solitary wave solutions of (3+1)-dimensional generalized shallow water wave equation by Lie symmetry approach. Comput. Math. Appl. 2019, 78, 857–877. [Google Scholar] [CrossRef]
- Meng, X.H. Rational solutions in Grammian form for the (3+1)-dimensional generalized shallow water wave equation. Comput. Math. Appl. 2018, 75, 4534–4539. [Google Scholar] [CrossRef]
- Zeng, Z.F.; Liu, J.G.; Nie, B. Multiple-soliton solutions, soliton-type solutions and rational solutions for the (3+1)-dimensional generalized shallow water equation in oceans, estuaries and impoundments. Nonlinear Dyn. 2016, 86, 667–675. [Google Scholar] [CrossRef]
- Li, Y.Z.; Liu, J.G. Multiple periodic-soliton solutions of the (3+1) dimensional generalised shallow water equation. Pramana J. Phys. 2018, 90, 71. [Google Scholar] [CrossRef]
- Yang, J.J.; Tian, S.F.; Peng, W.Q.; Li, Z.Q.; Zhang, T.T. The lump, lumpoff and rouge wave solutions of a (3+1)-dimensional generalized shallow water wave equation. Mod. Phys. Lett. B 2019, 33, 1950190. [Google Scholar] [CrossRef]
- Tang, Y.N.; Ma, W.X.; Xu, W. Grammian and Pfaffian solutions as well as Pfaffianization for a (3+1)-dimensional generalized shallow water equation. Chin. Phys. B 2012, 21, 070212. [Google Scholar] [CrossRef]
- Sadat, R.; Kassem, M.; Ma, W.X. Abundant lump-type solutions and interaction solutions for a nonlinear (3+1) dimensional model. Adv. Math. Phys. 2018, 10, 9178480. [Google Scholar] [CrossRef]
- Kumar, D.; Raju, I.; Paul, G.C.; Ali, M.E.; Haque, M.D. Characteristics of lump-kink and their fission-fusion interactions, rogue, and breather wave solutions for a (3+1)-dimensional generalized shallow water equation. Int. J. Comput. Math. 2022, 99, 714–736. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, M.D.; Li, X.; Li, B. Some interaction solutions of a reduced generalised (3+1)-dimensional shallow water wave equation for lump solutions and a pair of resonance solitons. Z. Naturforsch. 2017, 72, 419–424. [Google Scholar] [CrossRef]
- Wu, J.Z.; Xing, X.Z.; Geng, X.G. Generalized bilinear differential operators application in a (3+1)-dimensional generalized shallow water equation. Adv. Math. Phys. 2015, 2015, 291804. [Google Scholar] [CrossRef]
- Wang, J.; Li, B. High-order breather solutions, lump Solutions, and hybrid solutions of a reduced generalized (3+1)-dimensional shallow water wave equation. Complexity 2020, 2020, 9052457. [Google Scholar] [CrossRef]
- Zhou, A.J.; He, B.J. Solitary wave solutions, fusionable wave solutions, periodic wave solutions and interactional solutions of the (3+1)-dimensional generalized shallow water wave equation. Mod. Phys. Lett. B 2021, 35, 2150389. [Google Scholar] [CrossRef]
- Ma, W.X. Generalized bilinear differential equations. Stud. Nonlinear Sci. 2011, 2, 140. [Google Scholar]
- Zhang, Y.; Dong, H.H.; Zhang, X.E.; Yang, H.W. Rational solutions and lump solutions to the generalized (3+1)-dimensional Shallow Water-like equation. Comput. Math. Appl. 2017, 73, 246–252. [Google Scholar] [CrossRef]
- Wang, X.M.; Bilige, S.D.; Feng, Y.Y. Abundant exact analytical solutions and novel interaction phenomena of the generalized (3+1)-dimensional shallow water equation. Therm. Sci. 2021, 25, 2169–2181. [Google Scholar] [CrossRef]
- Ma, W.X. Bilinear equations, Bell polynomials and linear superposition principle. J. Phys. Conf. Ser. 2013, 411, 012021. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilige, S.; Cui, L.; Wang, X. Superposition Formulas and Evolution Behaviors of Multi-Solutions to the (3+1)-Dimensional Generalized Shallow Water Wave-like Equation. Mathematics 2023, 11, 1966. https://doi.org/10.3390/math11081966
Bilige S, Cui L, Wang X. Superposition Formulas and Evolution Behaviors of Multi-Solutions to the (3+1)-Dimensional Generalized Shallow Water Wave-like Equation. Mathematics. 2023; 11(8):1966. https://doi.org/10.3390/math11081966
Chicago/Turabian StyleBilige, Sudao, Leilei Cui, and Xiaomin Wang. 2023. "Superposition Formulas and Evolution Behaviors of Multi-Solutions to the (3+1)-Dimensional Generalized Shallow Water Wave-like Equation" Mathematics 11, no. 8: 1966. https://doi.org/10.3390/math11081966
APA StyleBilige, S., Cui, L., & Wang, X. (2023). Superposition Formulas and Evolution Behaviors of Multi-Solutions to the (3+1)-Dimensional Generalized Shallow Water Wave-like Equation. Mathematics, 11(8), 1966. https://doi.org/10.3390/math11081966