On Generalizations of the Close-to-Convex Functions Associated with -Srivastava–Attiya Operator
Abstract
:1. Introduction
2. Main Results
- (i)
- .
- (ii)
- .
- (iii)
- (iv)
2.1. Inclusion of Classes
2.2. Invariance of the Classes Under -Bernardi Integral Operator
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adams, C.R. On the linear ordinary q-difference equation. Ann. Math. 1929, 30, 195–205. [Google Scholar] [CrossRef]
- Carmicheal, R.D. The general theory of linear q-difference equations. Am. J. Math. 1912, 34, 147–168. [Google Scholar] [CrossRef]
- Trijitzinsky, W.J. Analytic theory of linear q-difference equations. Acta Math. 1933, 61, 1–38. [Google Scholar] [CrossRef]
- Aral, A.; Gupta, V. On q-Baskakov type operators. Demonstr. Math. 2009, 42, 109–122. [Google Scholar]
- Aral, A.; Gupta, V. Generalized q-Baskakov operators. Math. Slovaca 2011, 61, 619–634. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinburgh. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-defnite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Anastassiu, G.A.; Gal, S.G. Geometric and approximation properties of generalized singular integrals. J. Korean Math. Soc. 2006, 23, 425–443. [Google Scholar] [CrossRef]
- Aral, A. On the generalized Picard and Gauss Weierstrass singular integrals. J. Comput. Anal. Appl. 2006, 8, 249–261. [Google Scholar]
- Ali, R.M.; Ravichandran, V. Classes of meromorphic alpha-convex functions. Taiwan. J. Math. 2010, 14, 1479–1490. [Google Scholar]
- Anastassiu, G.A.; Gal, S.G. Geometric and approximation properties of some singular integrals in the unit disk. J. Inequal. Appl. 2006, 2006, 17231. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations Theory and Applications; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 2000. [Google Scholar]
- Exton, H. q-Hypergeometric Functions and Applications; Ellis Horwood Limited: Chichester, UK, 1983. [Google Scholar]
- Ezeafulukwe, U.A.; Darus, M. A note on q-calculus. Fasc. Math. 2015, 55, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Ghany, H.A. q-derivative of basic hypergeomtric series with respect to parameters. Int. J. Math. Anal. 2009, 3, 1617–1632. [Google Scholar]
- Koc, V.; Cheung, P. Quantum Calculus; Springer: Berlin, Germany, 2001. [Google Scholar]
- Ucar, H.E.O. Coefficient inequality for q-starlike functions. Appl. Math. Comput. 2016, 276, 122–126. [Google Scholar]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Agrawal, S.; Sahoo, S.K. A generalization of starlike functions of order alpha. Hokkaido Math. J. 2017, 46, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Altintas, O.; Mustafa, N. Coefficient bounds and distortion theorems for the certain analytic functions. Turk. J. Math. 2019, 43, 985–997. [Google Scholar] [CrossRef]
- Noor, K.I. On generalized q-close-to-convexity. Appl. Math. Inform. Sci. 2017, 11, 1383–1388. [Google Scholar] [CrossRef]
- Noor, K.I.; Riaz, S. Generalized q-starlike functions. Stud. Scient. Math. Hung. 2017, 54, 509–522. [Google Scholar] [CrossRef]
- Raghavendar, K.; Swaminathan, A. Close-to-convexity of basic hypergeometric functions using their Taylor coefficients. J. Math. Appl. 2012, 35, 111–125. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Owa, S. Univalent Functions, Fractional Calculus, and Their Applications; John Wiley and Sons: New York, NY, USA, 1989. [Google Scholar]
- Ucar, H.E.; Mert, O.; Polatoglu, Y. Some properties of q-close-to-convex functions. Hacettepe J. Math. Stat. 2017, 46, 1105–1112. [Google Scholar]
- Noor, K.I.; Shah, S.A. Study of the q-spiral-like functions of complex order. Math. Slovaca 2021, 1, 75–82. [Google Scholar] [CrossRef]
- Shah, S.A.; Maitlo, A.A.; Soomro, M.A.; Noor, K.I. On new subclass of harmonc unvalent functions assocated with modified q-operator. Int. J. Anal. Appl. 2021, 19, 826–835. [Google Scholar] [CrossRef]
- Noor, K.I.; Shah, S.A. On q-Mocanu type functions associated with q-Ruscheweyh derivative operator. Int. J. Anal. Appl. 2020, 18, 550–558. [Google Scholar]
- Kanas, S.; Raducanu, D. Some classes of analytic functions related to Conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Noor, K.I.; Riaz, S.; Noor, M.A. On q-Bernardi integral operator. TWMS J. Pure Appl. Math. 2017, 8, 3–11. [Google Scholar]
- Arif, M.; Ul-Haq, M.; Liu, J.L. A subfamily of univalent functions associated with q-analogueof Noor integral operator. J. Funct. Spaces 2018, 2018, 5. [Google Scholar]
- Shah, S.A.; Noor, K.I. Study on q-analogue of certain family of linear operators. Turk. J. Math. 2019, 43, 2707–2714. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Attiya, A.A. An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination. Int. Transform Spec. Funct. 2007, 18, 207–216. [Google Scholar] [CrossRef]
- Govindaraj, M.; Sivasubramanian, S. On a class of analytic functions related to conic domains involving q-calculus. Anal. Math. 2017, 43, 475–487. [Google Scholar] [CrossRef]
- Wongsaigai, B.; Sukantamala, N. A certain class of q-close-to-convex functions of order α. Filomat 2018, 32, 2295–2305. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.S.; Mocanu, P.T. Second order differential inequalities in the complex plane. J. Math. Anal. Appl. 1978, 65, 289–305. [Google Scholar] [CrossRef] [Green Version]
- Shamsan, H.; Latha, S. On genralized bounded Mocanu variation related to q-derivative and conic regions. Ann. Pure Appl. Math. 2018, 17, 67. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breaz, D.; Alahmari, A.A.; Cotîrlă, L.-I.; Ali Shah, S.
On Generalizations of the Close-to-Convex Functions Associated with
Breaz D, Alahmari AA, Cotîrlă L-I, Ali Shah S.
On Generalizations of the Close-to-Convex Functions Associated with
Breaz, Daniel, Abdullah A. Alahmari, Luminiţa-Ioana Cotîrlă, and Shujaat Ali Shah.
2023. "On Generalizations of the Close-to-Convex Functions Associated with
Breaz, D., Alahmari, A. A., Cotîrlă, L. -I., & Ali Shah, S.
(2023). On Generalizations of the Close-to-Convex Functions Associated with