Three-Dimensional Swirling Flow of Nanofluid with Nanoparticle Aggregation Kinematics Using Modified Krieger–Dougherty and Maxwell–Bruggeman Models: A Finite Element Solution
Abstract
:1. Introduction
- ❖
- What effect does the Reynolds number have on flow and heat transport behavior?
- ❖
- What is the impact of the dimensionless heat source/sink parameter on the thermal profiles of an NF with and without NP aggregation?
- ❖
- What impact does an increase in Reynolds number and heat source/sink parameter have on the rate of heat transfer?
- ❖
- What impact does an increase in Reynolds number and heat source/sink parameter have on heat transfer in an NF with and without NP aggregation?
2. Problem Formulation
2.1. Assumptions and Conditions of the Model
- ❖
- Three-dimensional laminar flow,
- ❖
- The Maxwell–Bruggeman models for thermal conductivity,
- ❖
- The modified Krieger–Dougherty models for viscosity,
- ❖
- NP aggregation,
- ❖
- Titania–EG NF,
- ❖
- Swirling flow,
- ❖
- Stretching cylinder with a torsional motion.
2.2. Geometry of Fluid Flow
2.3. Model Equation
2.4. Thermo-Physical and Thermal Characteristics for Aggregation Process
2.5. Reduced Equations and Expressions for Parameters
2.6. Quantities for Engineering Interest
3. Finite Element Method Solutions
4. Code Validation
5. Results and Discussion
5.1. Influence of on Velocity Fields
5.2. Influence of and on Thermal Field
5.3. Influence of Different Parameters on and
6. Conclusions
- ➢
- Larger values enhance the system’s inertial force, which resists the liquid accelerating force and declines both velocities and heat transport. This condition may be used to explore the behavior of liquids or gases in systems where inertia plays a substantial role, such as in large-scale pipelines, channels, or manufacturing processes that include the motion of liquids.
- ➢
- The NF flow with NP aggregation shows improved heat transport compared to the other case for increased values.
- ➢
- The NF with NP aggregation shows improved heat transport compared to the other case for increased values.
- ➢
- The augmentation in advances the heat conveyance rate, but an increment in value declines the heat transport rate. In heat exchangers, coolers, and condensers, this condition is used to regulate heat transmission. The increased inertial force reduces fluid velocities and heat transfer, which may be desired to avoid overheating or meet thermal performance goals.
- ➢
- The NF flow with aggregation shows enhanced heat transportation compared to the case without aggregation for increased values.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Ambient temperature | Constant torsional motion of the cylinder | ||
, | Skin friction coefficients | Reynolds number | |
Nusselt number | Positive constant | ||
Thermal conductivity | Kinematic viscosity | ||
Heat source/sink coefficient | Surface temperature | ||
Volume fraction | Dimensionless velocity profiles | ||
Stretching strength | Dimensionless thermal profile | ||
Heat source/sink parameter | Dynamic viscosity | ||
Solid volume fraction of aggregates | Heat capacitance | ||
Prandtl number | Subscripts | ||
Velocity components | Fluid | ||
Temperature | Aggregate | ||
Dimensionless similarity coordinate | Nanofluid | ||
Cylindrical coordinates | Solid nanoparticle | ||
Density | Base fluid |
References
- Wang, C.Y. Fluid flow due to a stretching cylinder. Phys. Fluids 1988, 31, 466. [Google Scholar] [CrossRef]
- Sprague, M.A.; Weidman, P.D. Three-dimensional flow induced by the torsional motion of a cylinder. Fluid Dyn. Res. 2010, 43, 015501. [Google Scholar] [CrossRef]
- Javed, M.F.; Khan, M.I.; Khan, N.B.; Muhammad, R.; Rehman, M.U.; Khan, S.W.; Khan, T.A. Axisymmetric flow of Casson fluid by a swirling cylinder. Results Phys. 2018, 9, 1250–1255. [Google Scholar] [CrossRef]
- Khan, M.; Ahmed, A.; Ahmed, J. Boundary layer flow of Maxwell fluid due to torsional motion of cylinder: Modeling and simulation. Appl. Math. Mech. 2020, 41, 667–680. [Google Scholar] [CrossRef]
- Ahmed, J.; Shahzad, A.; Farooq, A.; Kamran, M.; Khan, S.U.-D.; Khan, S.U.-D. Thermal analysis in swirling flow of titanium dioxide–aluminum oxide water hybrid nanofluid over a rotating cylinder. J. Therm. Anal. Calorim. 2020, 144, 2175–2185. [Google Scholar] [CrossRef]
- Ali, A.M.; Rona, A.; Kadhim, H.T.; Angelino, M.; Gao, S. Thermo-hydraulic performance of a circular microchannel heat sink using swirl flow and nanofluid. Appl. Therm. Eng. 2021, 191, 116817. [Google Scholar] [CrossRef]
- Rafiq, T.; Mustafa, M. Computational Analysis of Unsteady Swirling Flow Around a Decelerating Rotating Porous Disk in Nanofluid. Arab. J. Sci. Eng. 2019, 45, 1143–1154. [Google Scholar] [CrossRef]
- Usman, A.H.; Khan, N.S.; Humphries, U.W.; Shah, Z.; Kumam, P.; Khan, W.; Khan, A.; Rano, S.A.; Ullah, Z. Development of Dynamic Model and Analytical Analysis for the Diffusion of Different Species in Non-Newtonian Nanofluid Swirling Flow. Front. Phys. 2021, 8, 616790. [Google Scholar] [CrossRef]
- Reddy, P.S.; Sreedevi, P.; Chamkha, A.J. Heat and mass transfer analysis of nanofluid flow over swirling cylinder with Cattaneo–Christov heat flux. J. Therm. Anal. Calorim. 2021, 147, 3453–3468. [Google Scholar] [CrossRef]
- Gangadhar, K.; Victoria, E.M.; Chamkha, A.J. Hydrothermal features in the swirling flow of radiated graphene—Fe3O4 hybrid nanofluids through a rotating cylinder with exponential space-dependent heat generation. Waves Random Complex Media 2022, 1–24. [Google Scholar] [CrossRef]
- Wensel, J.; Wright, B.; Thomas, D.; Douglas, W.; Mannhalter, B.; Cross, W.; Hong, H.; Kellar, J.J.; Smith, P.; Roy, W. Enhanced thermal conductivity by aggregation in heat transfer nanofluids containing metal oxide nanoparticles and carbon nanotubes. Appl. Phys. Lett. 2008, 92, 023110. [Google Scholar] [CrossRef]
- Prasher, R.; Phelan, P.E.; Bhattacharya, P. Effect of Aggregation Kinetics on the Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluid). Nano Lett. 2006, 6, 1529–1534. [Google Scholar] [CrossRef]
- Ellahi, R.; Hassan, M.; Zeeshan, A. Aggregation effects on water base Al2O3—Nanofluid over a permeable wedge in mixed convection. Asia-Pac. J. Chem. Eng. 2016, 11, 179–186. [Google Scholar] [CrossRef]
- Zhou, L.; Zhu, J.; Zhao, Y.; Ma, H. A molecular dynamics study on thermal conductivity enhancement mechanism of nanofluids—Effect of nanoparticle aggregation. Int. J. Heat Mass Transf. 2021, 183, 122124. [Google Scholar] [CrossRef]
- Roodbari, M.; Abbasi, M.; Arabha, S.; Gharedaghi, A.; Rajabpour, A. Interfacial thermal conductance between TiO2 nanoparticle and water: A molecular dynamics study. J. Mol. Liq. 2021, 348, 118053. [Google Scholar] [CrossRef]
- Alzahrani, F.; Gowda, R.P.; Kumar, R.N.; Khan, M.I. Dynamics of thermosolutal Marangoni convection and nanoparticle aggregation effects on Oldroyd-B nanofluid past a porous boundary with homogeneous-heterogeneous catalytic reactions. J. Indian Chem. Soc. 2022, 99, 100458. [Google Scholar] [CrossRef]
- Wang, F.; Kumar, R.N.; Prasannakumara, B.C.; Khan, U.; Zaib, A.; Abdel-Aty, A.-H.; Yahia, I.S.; Alqahtani, M.S.; Galal, A.M. Aspects of Uniform Horizontal Magnetic Field and Nanoparticle Aggregation in the Flow of Nanofluid with Melting Heat Transfer. Nanomaterials 2022, 12, 1000. [Google Scholar] [CrossRef]
- Wang, F.; Rani, S.P.; Sarada, K.; Gowda, R.P.; Khan, U.; Zahran, H.Y.; Mahmoud, E.E. The effects of nanoparticle aggregation and radiation on the flow of nanofluid between the gap of a disk and cone. Case Stud. Therm. Eng. 2022, 33, 101930. [Google Scholar] [CrossRef]
- Mahanthesh, B. Flow and heat transport of nanomaterial with quadratic radiative heat flux and aggregation kinematics of nanoparticles. Int. Commun. Heat Mass Transf. 2021, 127, 105521. [Google Scholar] [CrossRef]
- Yu, Y.; Madhukesh, J.K.; Khan, U.; Zaib, A.; Abdel-Aty, A.-H.; Yahia, I.S.; Alqahtani, M.S.; Wang, F.; Galal, A.M. Nanoparticle Aggregation and Thermophoretic Particle Deposition Process in the Flow of Micropolar Nanofluid over a Stretching Sheet. Nanomaterials 2022, 12, 977. [Google Scholar] [CrossRef]
- Muthucumaraswamy, R.; Sivakumar, P. MHD flow past a parabolic flow past an infinite isothermal vertical plate in the presence of thermal radiation and chemical reaction. Int. J. Appl. Mech. Eng. 2016, 21, 95–105. [Google Scholar] [CrossRef]
- Radhika, M.; Gowda, R.J.P.; Naveenkumar, R.; Siddabasappa; Prasannakumara, B.C. Heat transfer in dusty fluid with suspended hybrid nanoparticles over a melting surface. Heat Transf. 2020, 50, 2150–2167. [Google Scholar] [CrossRef]
- Faisal, M.; Ahmad, I.; Javed, T. Numerical simulation of mixed convective 3D flow of a chemically reactive nanofluid subject to convective Nield’s conditions with a nonuniform heat source/sink. Heat Transf. 2020, 50, 352–369. [Google Scholar] [CrossRef]
- Chu, Y.-M.; Nazeer, M.; Khan, M.I.; Hussain, F.; Rafi, H.; Qayyum, S.; Abdelmalek, Z. Combined impacts of heat source/sink, radiative heat flux, temperature dependent thermal conductivity on forced convective Rabinowitsch fluid. Int. Commun. Heat Mass Transf. 2020, 120, 105011. [Google Scholar] [CrossRef]
- Punith Gowda, R.J.; Naveen Kumar, R.; Jyothi, A.M.; Prasannakumara, B.C.; Sarris, I.E. Impact of Binary Chemical Reaction and Activation Energy on Heat and Mass Transfer of Marangoni Driven Boundary Layer Flow of a Non-Newtonian Nanofluid. Processes 2021, 9, 702. [Google Scholar] [CrossRef]
- Fang, T.; Yao, S. Viscous Swirling Flow over a Stretching Cylinder. Chin. Phys. Lett. 2011, 28, 114702. [Google Scholar] [CrossRef]
- Acharya, N.; Das, K.; Kundu, P.K. Effects of aggregation kinetics on nanoscale colloidal solution inside a rotating channel. J. Therm. Anal. Calorim. 2019, 138, 461–477. [Google Scholar] [CrossRef]
- Benos, L.; Karvelas, E.; Sarris, I. Crucial effect of aggregations in CNT-water nanofluid magnetohydrodynamic natural convection. Therm. Sci. Eng. Prog. 2019, 11, 263–271. [Google Scholar] [CrossRef]
- Mackolil, J.; Mahanthesh, B. Sensitivity analysis of Marangoni convection in TiO2–EG nanoliquid with nanoparticle aggregation and temperature-dependent surface tension. J. Therm. Anal. Calorim. 2020, 143, 2085–2098. [Google Scholar] [CrossRef]
- Leela, V.; Prasannakumara, B.C.; Shilpa, B.; Reddy, R.G. Computational analysis of ohmic and viscous dissipation effects on MHD mixed convection flow in a vertical channel with linearly varying wall temperatures. Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng. 2022. [Google Scholar] [CrossRef]
- Rani, H.P.; Leela, V.; Shilpa, B.; Nagabhushana, P. Numerical analysis of hydromagnetic mixed convective flow in an internally heated vertical porous layer using thermal nonequilibrium model. Heat Transf. 2022, 51, 6249–6273. [Google Scholar] [CrossRef]
- Shilpa, B.; Leela, V.; Rani, H.P. Stability analysis of MHD radiative mixed convective flow in vertical cylindrical annulus: Thermal nonequilibrium approach. Heat Transf. 2022, 52, 707–733. [Google Scholar] [CrossRef]
- Leela, V.; Nagabhushana, P.; Shilpa, B.; Reddy, R.G. Numerical investigation on effects of induced magnetic field and viscous dissipation on MHD mixed convection in a vertical micro-porous channel using the Brinkman–Forchheimer extended Darcy model. Int. J. Ambient. Energy 2022, 43, 6950–6964. [Google Scholar] [CrossRef]
- Shilpa, B.; Leela, V.; Prasannakumara, B.C.; Nagabhushana, P. Soret and Dufour effects on MHD double-diffusive mixed convective heat and mass transfer of couple stress fluid in a channel formed by electrically conducting and non-conducting walls. Waves Random Complex Media 2022, 1–22. [Google Scholar] [CrossRef]
Ethylene glycol | ||||
TiO2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsulami, M.D.; Abdulrahman, A.; Kumar, R.N.; Punith Gowda, R.J.; Prasannakumara, B.C. Three-Dimensional Swirling Flow of Nanofluid with Nanoparticle Aggregation Kinematics Using Modified Krieger–Dougherty and Maxwell–Bruggeman Models: A Finite Element Solution. Mathematics 2023, 11, 2081. https://doi.org/10.3390/math11092081
Alsulami MD, Abdulrahman A, Kumar RN, Punith Gowda RJ, Prasannakumara BC. Three-Dimensional Swirling Flow of Nanofluid with Nanoparticle Aggregation Kinematics Using Modified Krieger–Dougherty and Maxwell–Bruggeman Models: A Finite Element Solution. Mathematics. 2023; 11(9):2081. https://doi.org/10.3390/math11092081
Chicago/Turabian StyleAlsulami, M. D., Amal Abdulrahman, R. Naveen Kumar, R. J. Punith Gowda, and B. C. Prasannakumara. 2023. "Three-Dimensional Swirling Flow of Nanofluid with Nanoparticle Aggregation Kinematics Using Modified Krieger–Dougherty and Maxwell–Bruggeman Models: A Finite Element Solution" Mathematics 11, no. 9: 2081. https://doi.org/10.3390/math11092081
APA StyleAlsulami, M. D., Abdulrahman, A., Kumar, R. N., Punith Gowda, R. J., & Prasannakumara, B. C. (2023). Three-Dimensional Swirling Flow of Nanofluid with Nanoparticle Aggregation Kinematics Using Modified Krieger–Dougherty and Maxwell–Bruggeman Models: A Finite Element Solution. Mathematics, 11(9), 2081. https://doi.org/10.3390/math11092081