On the Bias of the Unbiased Expectation Theory
Abstract
:1. Introduction
2. Literature Review
3. Preliminary Notes
3.1. Concepts
3.2. On the Measures P, Q, and T
3.2.1. On the Measures P and Q and Utility Functions
3.2.2. On the Measures Q and T and the Stochasticity of Interest Rates
3.3. ATS Interest Rate Models
4. Results
4.1. Vasicek Model
4.2. CIR Model
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Fisher, I. The Theory of Interest as Determined by Impatience to Spend Income and Opportunity to Invest it. Bull. Am. Math. 1930, 36, 783–784. [Google Scholar]
- Hicks, J.R. Value and Capital: An Inquiry into Some Fundamental Principles of Economic Theory; Oxford University Press: Oxford, UK, 1939. [Google Scholar]
- Gibson, W.E. Price-expectations effects on interest rates. J. Financ. 1970, 25, 19–34. [Google Scholar]
- Gibson, W.E. Interest rates and inflationary expectations: New evidence. Am. Econ. Rev. 1972, 62, 854–865. [Google Scholar]
- Gibson, W.E. Price-Expectations Effects on Interest Rates: Reply. J. Financ. 1973, 28, 751–753. [Google Scholar] [CrossRef]
- Shiller, R.J.; Siegel, J.J. The Gibson paradox and historical movements in real interest rates. J. Political Econ. 1977, 85, 891–907. [Google Scholar] [CrossRef]
- Fama, E.F. The information in the term structure. J. Financ. Econ. 1984, 13, 509–528. [Google Scholar] [CrossRef]
- Fama, E.F.; Bliss, R.R. The information in long-maturity forward rates. Am. Econ. Rev. 1987, 77, 680–692. [Google Scholar]
- Campbell, J.Y.; Shiller, R.J. Yield Spreads and Interest Rate Movements: A Bird’s Eye View. J. Fiancial Econ. 1991, 58, 495–514. [Google Scholar] [CrossRef]
- Bekaert, G.; Hodrick, R.J.; Marshall, D.A. On biases in tests of the expectations hypothesis of the term structure of interest rates. J. Financ. Econ. 1997, 44, 309–348. [Google Scholar] [CrossRef]
- Boudoukh, J.; Richardson, M.; Whitelaw, R.F. The Information in Long Maturity Forward Rates: Implications for Exchange Rates and the Forward Premium Anomaly; Working Paper 11840; National Bureau of Economic Research: Cambridge, MA, USA, 1995. [Google Scholar]
- Bansal, R.; Shaliastovich, I. A long-run risks explanation of predictability puzzles in bond and currency markets. Rev. Financ. Stud. 2013, 26, 1–33. [Google Scholar] [CrossRef]
- Yaron, A.; Bansal, R. Risks for the long run: A potential resolution of asset pricing puzzles. J. Financ. 2004, 59, 1481–1509. [Google Scholar]
- Eraker, B. Affine general equilibrium models. Manag. Sci. 2008, 54, 2068–2080. [Google Scholar] [CrossRef]
- Piazzesi, M.; Schneider, M.; Benigno, P.; Campbell, J.Y. Equilibrium yield curves, with comments and discussion. NBER Macroecon. Annu. 2006, 21, 389–472. [Google Scholar] [CrossRef]
- Backus, D.K.; Gregory, A.W.; Zin, S.E. Risk Premiums in the term structure. J. Econ. 1989, 24, 371–399. [Google Scholar] [CrossRef]
- Hansen, L.P.; Singleton, K.J. Generalized instrumental variables estimation of Nonlinear rational expectations models. Econometrica 1982, 50, 1269–1286. [Google Scholar] [CrossRef]
- Vasicek, O. An Equilibrium Characterization of the Term Structure. J. Financ. Econom. 1977, 5, 177–188. [Google Scholar] [CrossRef]
- Cox, J.C.; Ingersoll, J.E.; Ross, S.A. A Theory of the Term Structure of Interest Rates. Econometrica 1985, 53, 385–407. [Google Scholar] [CrossRef]
- Cox, J.C.; Ingersoll, J.E.; Ross, S.A. An Intertemporal General Equilibrium Model of Asset Prices. Econometrica 1985, 53, 363–384. [Google Scholar] [CrossRef]
- Dai, Q.; Singleton, K. Term structure dynamics in theory and reality. Rev. Financ. Stud. 2003, 16, 631–678. [Google Scholar] [CrossRef]
- Longstaff, F.A.; Schwartz, E.S. Interest rate volatility and the term structure: A two-factor general equilibrium model. J. Financ. 1992, 47, 1259–1282. [Google Scholar]
- Brennan, M.J.; Xia, Y. Assessing asset pricing anomalies. Rev. Financ. Stud. 2001, 14, 905–942. [Google Scholar] [CrossRef]
- Cochrane, J.H.; Piazzesi, M. Bond risk premia. Am. Econ. Rev. 2005, 95, 138–160. [Google Scholar] [CrossRef]
- Bulkley, G.; Harris, R.D.; Nawosah, V. Can behavioral biases explain the rejections of the expectation hypothesis of the term 504 structure of interest rates? J. Bank. Financ. 2015, 58, 179–193. [Google Scholar] [CrossRef]
- Nelson, C.R.; Siegel, A.F. Parsimonious modeling of yield curves. J. Bus. 1987, 60, 473–489. [Google Scholar] [CrossRef]
- Svensson, L.E. Estimating and Interpreting Forward Interest Rates: Sweden 1992–1994; Working Paper 4871; National Bureau of Economic Research: Cambridge, MA, USA, 1994. [Google Scholar]
- Björk, T.; Christensen, B.J. Interest rate dynamics and consistent forward rate curves. Math. Financ. 1999, 9, 323–348. [Google Scholar] [CrossRef]
- Litterman, R.B.; Scheinkman, J. Common factors affecting bond returns. J. Fixed Income 1991, 1, 54–61. [Google Scholar] [CrossRef]
- Dai, Q.; Singleton, K.J. Specification analysis of affine term structure models. J. Financ. 2000, 55, 1943–1978. [Google Scholar] [CrossRef]
- Guidolin, M.; Thornton, D.L. Predictions of Short-Term Rates and the Expectations Hypothesis of the Term Structure of Interest Rates; European Central Bank: Frankfurt, Germany, 2008. [Google Scholar]
- Vayanos, D.; Vila, J.L. A preferred-habitat model of the term structure of interest rates. Econometrica 2021, 89, 77–112. [Google Scholar] [CrossRef]
- Heath, D.; Jarrow, R.; Morton, A. Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation. Econom. J. Econom. Soc. 1992, 60, 77–105. [Google Scholar] [CrossRef]
- Brace, A.; Ģatarek, D.; Musiela, M. The market model of interest rate dynamics. Math. Financ. 1997, 7, 127–155. [Google Scholar] [CrossRef]
- Jamshidian, F. LIBOR and swap market models and measures. Financ. Stochastics 1997, 1, 293–330. [Google Scholar] [CrossRef]
- Chan, K.C.; Karolyi, G.A.; Longstaff, F.A.; Sanders, A.B. An empirical comparison of alternative models of the short-term interest rate. J. Financ. 1992, 47, 1209–1227. [Google Scholar]
- Duffie, D.; Kan, R. A yield-factor model of interest rates. Math. Financ. 1996, 6, 379–406. [Google Scholar] [CrossRef]
- Black, F.; Derman, E.; Toy, W. A one-factor model of interest rates and its application to treasury bond options. Financ. Anal. J. 1990, 46, 33–39. [Google Scholar] [CrossRef]
- Black, F.; Karasinski, P. Bond and option pricing when short rates are lognormal. Financ. Anal. J. 1991, 47, 52–59. [Google Scholar] [CrossRef]
- Mercurio, F.; Moraleda, J.M. A family of humped volatility models. Eur. J. Financ. 2001, 7, 93–116. [Google Scholar] [CrossRef]
- Cox, J. Notes on Option Pricing I: Constant Elasticity of Variance Diffusions. Unpublished Note. Stanford University, Graduate School of Business: Stanford, CA, USA, 1975. [Google Scholar]
- Hull, J.; White, A. Pricing interest-rate-derivative securities. Rev. Financ. Stud. 1990, 3, 573–592. [Google Scholar] [CrossRef]
- Von Neumann, J.; Morgenstern, O. Theory of Games and Economic Behavior, 2nd rev ed.; Princeton University Press: Princeton, NJ, USA, 1947. [Google Scholar]
- Bick, A. On the Consistency of the Black-Scholes Model with a General Equilibrium Framework. J. Financ. 1990, 45, 673–689. [Google Scholar] [CrossRef]
- Aït-Sahalia, Y.; Lo, A.W. Nonparametric risk management and implied risk aversion. J. Econom. 2000, 94, 9–51. [Google Scholar] [CrossRef]
- He, H.; Leland, H. On equilibrium asset price processes. Rev. Financ. Stud. 1993, 6, 593–617. [Google Scholar] [CrossRef]
- Geman, H.; El Karoui, N.; Rochet, J.C. Changes of numeraire, changes of probability measure and option pricing. J. Appl. Probab. 1995, 32, 443–458. [Google Scholar] [CrossRef]
- Jarrow, R.; Protter, P. A short history of stochastic integration and mathematical finance: The early years, 1880–1970. Lect. Notes-Monograph Ser. 2004, 45, 75–91. [Google Scholar]
- Björk, T. Arbitrage in Continuous Time; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Zeytun, S.; Gupta, A. A Comparative Study of the Vasicek and the Cir Model of the Short Rate; Fraunhofer ITWW: Kaiserslautern, Germany, 2007. [Google Scholar]
T | 1 | 2 | 5 | 10 | 1 | 2 | 5 | 10 |
4.155 | 5.439 | 7.810 | 9.317 | 4.155 | 5.439 | 7.810 | 9.317 | |
4.150 | 5.435 | 7.823 | 9.348 | 4.159 | 5.451 | 7.851 | 9.384 | |
0.004 | 0.012 | 0.041 | 0.067 | 0.004 | 0.012 | 0.041 | 0.067 | |
−0.009 | −0.016 | −0.029 | −0.037 | 0.000 | 0.000 | 0.000 | 0.000 | |
bias weight in | −0.119 | −0.062 | 0.156 | 0.328 | 0.094 | 0.227 | 0.519 | 0.718 |
weight in bias | −79.340 | −369.348 | 334.197 | 219.642 | 100.000 | 100.000 | 100.000 | 100.000 |
weight in bias | 179.340 | 469.348 | −234.197 | −119.642 | 0.000 | 0.000 | 0.000 | 0.000 |
T | 1 | 2 | 5 | 10 | 1 | 2 | 5 | 10 |
4.155 | 5.439 | 7.810 | 9.317 | 4.155 | 5.439 | 7.810 | 9.317 | |
4.168 | 5.467 | 7.880 | 9.421 | 4.177 | 5.482 | 7.908 | 9.458 | |
0.004 | 0.012 | 0.041 | 0.067 | 0.004 | 0.012 | 0.041 | 0.067 | |
0.009 | 0.016 | 0.029 | 0.037 | 0.018 | 0.031 | 0.057 | 0.073 | |
Bias weight in | 0.306 | 0.514 | 0.879 | 1.105 | 0.517 | 0.800 | 1.237 | 1.489 |
weight in bias | 30.671 | 44.038 | 58.797 | 64.737 | 18.113 | 28.237 | 41.640 | 47.860 |
weight in bias | 69.329 | 55.962 | 41.203 | 35.263 | 81.887 | 71.763 | 58.360 | 52.140 |
T | 1 | 2 | 5 | 10 | 1 | 2 | 5 | 10 |
4.155 | 5.439 | 7.810 | 9.317 | 4.155 | 5.439 | 5.439 | 9.317 | |
4.186 | 5.498 | 7.937 | 9.495 | 4.203 | 5.530 | 5.530 | 9.568 | |
0.004 | 0.012 | 0.041 | 0.067 | 0.004 | 0.012 | 0.012 | 0.067 | |
0.027 | 0.047 | 0.086 | 0.110 | 0.044 | 0.079 | 0.079 | 0.184 | |
Bias weight in | 0.728 | 1.084 | 1.592 | 1.870 | 1.146 | 1.647 | 1.647 | 2.623 |
weight in bias | 12.851 | 20.780 | 32.234 | 37.963 | 8.129 | 13.599 | 13.599 | 26.856 |
weight in bias | 87.149 | 79.220 | 67.766 | 62.037 | 91.871 | 86.401 | 86.401 | 73.144 |
T | 1 | 2 | 5 | 10 | 1 | 2 | 5 | 10 |
4.061 | 5.141 | 6.833 | 7.699 | 4.061 | 5.141 | 6.833 | 7.699 | |
3.938 | 5.058 | 7.138 | 8.466 | 4.159 | 5.451 | 7.851 | 9.384 | |
0.098 | 0.310 | 1.018 | 1.685 | 0.098 | 0.310 | 1.018 | 1.685 | |
−0.221 | −0.393 | −0.713 | −0.918 | 0.000 | 0.000 | 0.000 | 0.000 | |
Bias weight in | −3.132 | −1.658 | 4.268 | 9.062 | 2.353 | 5.680 | 12.968 | 17.957 |
weight in bias | −79.340 | −369.348 | 334.197 | 219.642 | 100.000 | 100.000 | 100.000 | 100.000 |
weight in bias | 179.340 | 469.348 | −234.197 | −119.642 | 0.000 | 0.000 | 0.000 | 0.000 |
T | 1 | 2 | 5 | 10 | 1 | 2 | 5 | 10 |
4.061 | 5.141 | 6.833 | 7.699 | 4.061 | 5.141 | 6.833 | 7.699 | |
4.380 | 5.844 | 8.565 | 10.302 | 4.601 | 6.238 | 9.278 | 11.220 | |
0.098 | 0.310 | 1.018 | 1.685 | 0.098 | 0.310 | 1.018 | 1.685 | |
0.221 | 0.393 | 0.713 | 0.918 | 0.442 | 0.787 | 1.427 | 1.836 | |
Bias weight in | 7.284 | 12.030 | 20.218 | 25.267 | 11.741 | 17.579 | 26.354 | 31.381 |
weight in bias | 30.671 | 44.038 | 58.797 | 64.737 | 18.113 | 28.237 | 41.640 | 47.860 |
weight in bias | 69.329 | 55.962 | 41.203 | 35.263 | 81.887 | 71.763 | 58.360 | 52.140 |
T | 1 | 2 | 5 | 10 | 1 | 2 | 5 | 10 |
4.061 | 5.141 | 6.833 | 7.699 | 4.061 | 5.141 | 6.833 | 7.699 | |
4.823 | 6.631 | 9.992 | 12.138 | 5.265 | 7.418 | 11.419 | 13.974 | |
0.098 | 0.310 | 1.018 | 1.685 | 0.098 | 0.310 | 1.018 | 1.685 | |
0.664 | 1.180 | 2.140 | 2.754 | 1.106 | 1.967 | 3.567 | 4.590 | |
Bias weight in | 15.789 | 22.469 | 31.613 | 36.570 | 22.865 | 30.694 | 40.159 | 44.903 |
weight in bias | 12.851 | 20.780 | 32.234 | 37.963 | 8.129 | 13.599 | 22.203 | 26.856 |
weight in bias | 87.149 | 79.220 | 67.766 | 62.037 | 91.871 | 86.401 | 77.797 | 73.144 |
T| | −1 | 0 | 1 | 2 | 5 | T| | −1 | 0 | 1 | 2 | 5 |
1 | −0.512 | 0.488 | 1.488 | 2.488 | 5.488 | 1 | −0.524 | 0.476 | 1.476 | 2.476 | 5.476 |
2 | −0.048 | 0.952 | 1.952 | 2.952 | 5.952 | 2 | −0.094 | 0.906 | 1.906 | 2.906 | 5.906 |
5 | 1.212 | 2.212 | 3.212 | 4.212 | 7.212 | 5 | 0.967 | 1.967 | 2.967 | 3.967 | 6.967 |
10 | 2.935 | 3.935 | 4.935 | 5.935 | 8.935 | 10 | 2.161 | 3.161 | 4.161 | 5.161 | 8.161 |
20 | 5.321 | 6.321 | 7.321 | 8.321 | 11.321 | 20 | 3.323 | 4.323 | 5.323 | 6.323 | 9.323 |
T| | −1 | 0 | 1 | 2 | 5 | T| | −1 | 0 | 1 | 2 | 5 |
1 | −0.558 | 0.442 | 1.442 | 2.442 | 5.442 | 1 | −0.607 | 0.393 | 1.393 | 2.393 | 5.393 |
2 | −0.213 | 0.787 | 1.787 | 2.787 | 5.787 | 2 | −0.368 | 0.632 | 1.632 | 2.632 | 5.632 |
5 | 0.427 | 1.427 | 2.427 | 3.427 | 6.427 | 5 | −0.082 | 0.918 | 1.918 | 2.918 | 5.918 |
10 | 0.836 | 1.836 | 2.836 | 3.836 | 6.836 | 10 | −0.007 | 0.993 | 1.993 | 2.993 | 5.993 |
20 | 0.987 | 1.987 | 2.987 | 3.987 | 6.987 | 20 | 0.000 | 1.000 | 2.000 | 3.000 | 6.000 |
T | 1 | 2 | 5 | 10 | 1 | 2 | 5 | 10 |
4.156 | 5.439 | 7.796 | 9.258 | 4.156 | 5.439 | 7.796 | 9.258 | |
4.151 | 5.434 | 7.807 | 9.308 | 4.159 | 5.451 | 7.851 | 9.384 | |
0.003 | 0.012 | 0.055 | 0.127 | 0.003 | 0.012 | 0.055 | 0.127 | |
−0.008 | −0.017 | −0.044 | −0.076 | 0.000 | 0.000 | 0.000 | 0.000 | |
Bias weight in | −0.107 | −0.092 | 0.139 | 0.548 | 0.073 | 0.212 | 0.703 | 1.352 |
weight in bias | −68.577 | −230.338 | 506.989 | 248.881 | 100.000 | 100.000 | 100.000 | 100.000 |
weight in bias | 168.577 | 330.338 | −406.989 | −148.881 | 0.000 | 0.000 | 0.000 | 0.000 |
T | 1 | 2 | 5 | 10 | 1 | 2 | 5 | 10 |
4.156 | 5.439 | 7.796 | 9.258 | 4.156 | 5.439 | 7.796 | 9.258 | |
4.167 | 5.468 | 7.896 | 9.461 | 4.174 | 5.484 | 7.941 | 9.539 | |
0.003 | 0.012 | 0.055 | 0.127 | 0.003 | 0.012 | 0.055 | 0.127 | |
0.008 | 0.017 | 0.045 | 0.077 | 0.015 | 0.033 | 0.090 | 0.155 | |
Bias weight in | 0.254 | 0.516 | 1.265 | 2.154 | 0.434 | 0.819 | 1.825 | 2.954 |
weight in bias | 28.872 | 40.985 | 55.262 | 62.251 | 16.856 | 25.736 | 38.081 | 45.022 |
weight in bias | 71.128 | 59.015 | 44.738 | 37.749 | 83.144 | 74.264 | 61.919 | 54.978 |
T | 1 | 2 | 5 | 10 | 1 | 2 | 5 | 10 |
4.156 | 5.439 | 7.796 | 9.258 | 4.156 | 5.439 | 7.796 | 9.258 | |
4.182 | 5.501 | 7.986 | 9.618 | 4.197 | 5.535 | 8.078 | 9.780 | |
0.003 | 0.012 | 0.055 | 0.127 | 0.003 | 0.012 | 0.055 | 0.127 | |
0.023 | 0.050 | 0.135 | 0.234 | 0.038 | 0.084 | 0.227 | 0.395 | |
Bias weight in | 0.614 | 1.121 | 2.384 | 3.751 | 0.973 | 1.724 | 3.496 | 5.340 |
weight in bias | 11.895 | 18.737 | 28.991 | 35.157 | 7.478 | 12.110 | 19.542 | 24.290 |
weight in bias | 88.105 | 81.263 | 71.009 | 64.843 | 92.522 | 87.890 | 80.458 | 75.710 |
T | 1 | 2 | 5 | 10 | 1 | 2 | 5 | 10 |
4.084 | 5.177 | 6.721 | 7.251 | 4.084 | 5.177 | 6.721 | 7.251 | |
3.976 | 5.056 | 6.847 | 7.758 | 4.159 | 5.451 | 7.851 | 9.384 | |
0.075 | 0.274 | 1.130 | 2.133 | 0.075 | 0.274 | 1.130 | 2.133 | |
−0.183 | −0.395 | −1.004 | −1.626 | 0.000 | 0.000 | 0.000 | 0.000 | |
Bias weight in | −2.710 | −2.396 | 1.838 | 6.536 | 1.807 | 5.023 | 14.391 | 22.730 |
weight in bias | −69.746 | −226.050 | 897.964 | 420.669 | 100.000 | 100.000 | 100.000 | 100.000 |
weight in bias | 169.746 | 326.050 | −797.964 | −320.669 | 0.000 | 0.000 | 0.000 | 0.000 |
T | 1 | 2 | 5 | 10 | 1 | 2 | 5 | 10 |
4.084 | 5.177 | 6.721 | 7.251 | 4.084 | 5.177 | 6.721 | 7.251 | |
4.352 | 5.888 | 9.091 | 11.672 | 4.556 | 6.371 | 10.633 | 14.986 | |
0.075 | 0.274 | 1.130 | 2.133 | 0.075 | 0.274 | 1.130 | 2.133 | |
0.193 | 0.437 | 1.240 | 2.288 | 0.397 | 0.920 | 2.782 | 5.602 | |
Bias weight in | 6.165 | 12.068 | 26.066 | 37.875 | 10.369 | 18.738 | 36.788 | 51.614 |
weight in bias | 28.003 | 38.539 | 47.683 | 48.252 | 15.905 | 22.937 | 28.886 | 27.577 |
weight in bias | 71.997 | 61.461 | 52.317 | 51.748 | 84.095 | 77.063 | 71.114 | 72.423 |
T | 1 | 2 | 5 | 10 | 1 | 2 | 5 | 10 |
4.084 | 5.177 | 6.721 | 7.251 | 4.084 | 5.177 | 6.721 | 7.251 | |
4.772 | 6.906 | 12.564 | 19.928 | 5.241 | 8.159 | 18.091 | 39.400 | |
0.075 | 0.274 | 1.130 | 2.133 | 0.075 | 0.274 | 1.130 | 2.133 | |
0.613 | 1.455 | 4.713 | 10.543 | 1.082 | 2.708 | 10.239 | 30.016 | |
Bias weight in | 14.421 | 25.037 | 46.505 | 63.612 | 22.079 | 36.545 | 62.846 | 81.596 |
weight in bias | 10.919 | 15.836 | 19.337 | 16.827 | 6.494 | 9.184 | 9.938 | 6.635 |
weight in bias | 89.081 | 84.164 | 80.663 | 83.173 | 93.506 | 90.816 | 90.062 | 93.365 |
T| | −1 | 0 | 1 | 2 | 5 | T| | −1 | 0 | 1 | 2 | 5 |
1 | −0.523 | 0.476 | 1.475 | 2.474 | 5.470 | 1 | −0.511 | 0.461 | 1.434 | 2.409 | 5.341 |
2 | −0.088 | 0.908 | 1.903 | 2.899 | 5.886 | 2 | −0.097 | 0.807 | 1.721 | 2.643 | 5.455 |
5 | 0.999 | 1.979 | 2.958 | 3.936 | 6.873 | 5 | 0.501 | 1.193 | 1.937 | 2.728 | 5.326 |
10 | 2.257 | 3.200 | 4.134 | 5.079 | 7.895 | 10 | 0.532 | 1.056 | 1.693 | 2.435 | 5.088 |
20 | 3.506 | 4.361 | 5.216 | 6.077 | 8.682 | 20 | 0.342 | 0.748 | 1.350 | 2.139 | 5.005 |
T| | −1 | 0 | 1 | 2 | 5 | T| | −1 | 0 | 1 | 2 | 5 |
1 | −0.593 | 0.406 | 1.405 | 2.404 | 5.402 | 1 | −0.582 | 0.396 | 1.375 | 2.355 | 5.301 |
2 | −0.302 | 0.695 | 1.692 | 2.669 | 5.681 | 2 | −0.296 | 0.640 | 1.580 | 2.526 | 5.387 |
5 | 0.244 | 1.234 | 2.217 | 3.214 | 6.184 | 5 | 0.112 | 0.920 | 1.753 | 2.612 | 5.313 |
10 | 0.664 | 1.642 | 2.620 | 3.598 | 6.534 | 10 | 0.254 | 0.943 | 1.686 | 2.483 | 5.139 |
20 | 0.890 | 1.856 | 2.823 | 3.789 | 6.691 | 20 | 0.260 | 0.871 | 1.555 | 2.319 | 5.030 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
França, R.; Gaspar, R.M. On the Bias of the Unbiased Expectation Theory. Mathematics 2024, 12, 105. https://doi.org/10.3390/math12010105
França R, Gaspar RM. On the Bias of the Unbiased Expectation Theory. Mathematics. 2024; 12(1):105. https://doi.org/10.3390/math12010105
Chicago/Turabian StyleFrança, Renato, and Raquel M. Gaspar. 2024. "On the Bias of the Unbiased Expectation Theory" Mathematics 12, no. 1: 105. https://doi.org/10.3390/math12010105
APA StyleFrança, R., & Gaspar, R. M. (2024). On the Bias of the Unbiased Expectation Theory. Mathematics, 12(1), 105. https://doi.org/10.3390/math12010105