Residual Control Chart Based on a Convolutional Neural Network and Support Vector Regression for Type-I Censored Data with the Weibull Model
Abstract
:1. Introduction
2. Combined CNN and SVR
2.1. CNN
2.2. SVR
2.3. Combination of CNN and SVR
3. CNNSVR-Based Residual Chart
3.1. EWMA CEV Statistic for a Weibull Distribution
3.2. Setup of the Proposed Control Chart
- (1)
- Generate the lifetimes of n samples from a Weibull distribution with parameters and .
- (2)
- If , then ; otherwise, .
- (3)
- Calculate the sample mean .
- (4)
- Calculate the EWMA statistic using Equation (2).
- (5)
- Repeat steps (1) to (4) m times to obtain m EWMA statistics .
3.3. Performance Simulation for the Proposed Control Chart
4. Performance Comparison
5. Illustrative Example for Implementing a CNNSVR-Based Residual Chart
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khan, N.; Aslam, M.; Raza, S.M.M.; Jun, C.H. A new variable control chart under failure-censored reliability tests for Weibull distribution. Qual. Reliab. Eng. Int. 2019, 35, 572–581. [Google Scholar] [CrossRef]
- Xu, S.; Jeske, D.R. Weighted EWMA charts for monitoring type I censored Weibull lifetimes. J. Qual. Technol. 2018, 50, 220–230. [Google Scholar] [CrossRef]
- Yu, M.; Zhao, W.; Zhou, Y.; Wu, C. Robust online detection on highly censored data using a semi-parametric EWMA chart. J. Stat. Comput. Simul. 2023, 93, 1403–1419. [Google Scholar] [CrossRef]
- Steiner, S.H.; MacKay, R.J. Frontiers in Statistical Quality Control, 6th ed.; Springer: Berlin, Germany, 2001; pp. 275–289. [Google Scholar] [CrossRef]
- Steiner, S.H.; MacKay, R.J. Monitoring processes with data censored owing to competing risks by using exponentially weighted moving average control charts. J. R. Stat. Soc. Ser. C (Appl. Stat.) 2001, 50, 293–302. [Google Scholar] [CrossRef]
- Steiner, S.H.; MacKay, R.J. Monitoring processes with highly censored data. J. Qual. Technol. 2000, 32, 199–208. [Google Scholar] [CrossRef]
- Lee, P.-H. Economic design of a CEV control chart for determining optimal right-censored times. Qual. Technol. Quant. Manag. 2021, 18, 418–431. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, G. EWMA charts for monitoring the mean of censored Weibull lifetimes. J. Qual. Technol. 2004, 36, 321–328. [Google Scholar] [CrossRef]
- Bizuneh, B.; Wang, F.K. Comparison of different control charts for a Weibull process with type-I censoring. Commun. Stat.-Simul. Comput. 2019, 48, 1088–1100. [Google Scholar] [CrossRef]
- Raza, S.M.M.; Siddiqi, A.F. EWMA and DEWMA control charts for poissonExponential distribution: Conditional median approach for censored data. Qual. Reliab. Eng. Int. 2017, 33, 387–399. [Google Scholar] [CrossRef]
- Tsai, T.R.; Lin, C.C. The design of EWMA control chart for average with type-I censored data. Int. J. Qual. Reliab. Manag. 2009, 26, 397–405. [Google Scholar] [CrossRef]
- Raza, S.M.M.; Riaz, M.; Ali, S. EWMA control chart for poisson–exponential lifetime distribution under type I censoring. Qual. Reliab. Eng. Int. 2016, 32, 995–1005. [Google Scholar] [CrossRef]
- Raza, S.M.; Riaz, M.; Ali, S. On the performance of EWMA and DEWMA control charts for censored data. J. Chin. Inst. Eng. 2015, 38, 714–722. [Google Scholar] [CrossRef]
- Ali, S.; Raza, S.M.; Aslam, M.; Butt, M.M. CEV-Hybrid Dewma charts for censored data using Weibull distribution. Commun. Stat.-Simul. Comput. 2021, 50, 446–461. [Google Scholar] [CrossRef]
- Raza, S.M.; Ali, S.; Butt, M.M. DEWMA control charts for censored data using Rayleigh lifetimes. Qual. Reliab. Eng. Int. 2018, 34, 1675–1684. [Google Scholar] [CrossRef]
- Lee, P.-H.; Torng, C.-C.; Kao, P.-H.; Chou, C.-Y. Performance of two-sided EWMA CEV control charts with multiple censored data. Int. J. Ind. Eng. Theory Appl. Pract. 2022, 29, 487–498. [Google Scholar] [CrossRef]
- Zhao, W.; Wu, C. Monitoring the alternating renewal processes with Weibull window-censored data. Qual. Technol. Quant. Manag. 2023, 20, 468–484. [Google Scholar] [CrossRef]
- Chen, S.; Yu, J. Deep recurrent neural network-based residual control chart for autocorrelated processes. Qual. Reliab. Eng. Int. 2019, 35, 2687–2708. [Google Scholar] [CrossRef]
- Farokhnia, M.; Niaki, S.T.A. Principal component analysis-based control charts using support vector machines for multivariate non-normal distributions. Commun. Stat.-Simul. Comput. 2020, 49, 1815–1838. [Google Scholar] [CrossRef]
- Kim, J.-M.; Ha, I.D. Deep learning-based residual control chart for count data. Qual. Eng. 2022, 34, 370–381. [Google Scholar] [CrossRef]
- Lee, S.; Kim, S.B. Time-adaptive support vector data description for nonstationary process monitoring. Eng. Appl. Artif. Intell. 2018, 68, 18–31. [Google Scholar] [CrossRef]
- Maboudou-Tchao, E.M. Change detection using least squares one-class classification control chart. Qual. Technol. Quant. Manag. 2020, 17, 609–626. [Google Scholar] [CrossRef]
- Wang, F.-K.; Mamo, T. Hybrid approach for remaining useful life prediction of ball bearings. Qual. Reliab. Eng. Int. 2019, 35, 2494–2505. [Google Scholar] [CrossRef]
- Yeganeh, A.; Abbasi, S.A.; Shongwe, S.C.; Malela-Majika, J.-C.; Shadman, A.R. Evolutionary support vector regression for monitoring Poisson profiles. Soft Comput. 2023. [Google Scholar] [CrossRef]
- Yeganeh, A.; Chukhrova, N.; Johannssen, A.; Fotuhi, H. A network surveillance approach using machine learning based control charts. Expert Syst. Appl. 2023, 219, 119660. [Google Scholar] [CrossRef]
- Maged, A.; Lui, C.F.; Haridy, S.; Xie, M. Variational AutoEncoders-LSTM based fault detection of time-dependent high dimensional processes. Int. J. Prod. Res. 2023. [Google Scholar] [CrossRef]
- Yu, J.; Li, S.; Liu, X.; Gao, Y.; Wang, S.; Liu, C. Dynamic convolutional gated recurrent unit attention auto-encoder for feature learning and fault detection in dynamic industrial processes. Int. J. Prod. Res. 2023, 61, 7434–7452. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, J.; Wang, S. Fault detection and recognition of multivariate process based on feature learning of one-dimensional convolutional neural network and stacked denoised autoencoder. Int. J. Prod. Res. 2021, 59, 2426–2449. [Google Scholar] [CrossRef]
- Lee, P.-H.; Torng, C.-C.; Lin, C.-H.; Chou, C.-Y. Control chart pattern recognition using spectral clustering technique and support vector machine under gamma distribution. Comput. Ind. Eng. 2022, 171, 108437. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, M.; Dai, W. A condition monitoring approach for machining process based on control chart pattern recognition with dynamically-sized observation windows. Comput. Ind. Eng. 2020, 142, 106360. [Google Scholar] [CrossRef]
- Xu, J.; Lv, H.; Zhuang, Z.; Lu, Z.; Zou, D.; Qin, W. Control Chart Pattern Recognition Method Based on Improved One-dimensional Convolutional Neural Network. IFAC-Pap. 2019, 52, 1537–1542. [Google Scholar] [CrossRef]
- Xue, L.; Wu, H.; Zheng, H.; He, Z. Control chart pattern recognition for imbalanced data based on multi-feature fusion using convolutional neural network. Comput. Ind. Eng. 2023, 182, 109410. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, M. Control chart recognition based on the parallel model of CNN and LSTM with GA optimization. Expert Syst. Appl. 2021, 185, 115689. [Google Scholar] [CrossRef]
- Zan, T.; Liu, Z.; Wang, H.; Wang, M.; Gao, X. Control chart pattern recognition using the convolutional neural network. J. Intell. Manuf. 2020, 31, 703–716. [Google Scholar] [CrossRef]
- Sabahno, H.; Amiri, A. New statistical and machine learning based control charts with variable parameters for monitoring generalized linear model profiles. Comput. Ind. Eng. 2023, 184, 109562. [Google Scholar] [CrossRef]
- Wang, F.-K.; Bizuneh, B.; Cheng, X.-B. One-sided control chart based on support vector machines with differential evolution algorithm. Qual. Reliab. Eng. Int. 2019, 35, 1634–1645. [Google Scholar] [CrossRef]
- Yu, J.; Liu, X. One-dimensional residual convolutional auto encoder for fault detection in complex industrial processes. Int. J. Prod. Res. 2022, 60, 5655–5674. [Google Scholar] [CrossRef]
- Beniwal, M.; Singh, A.; Kumar, N. Forecasting long-term stock prices of global indices: A forward-validating Genetic Algorithm optimization approach for Support Vector Regression. Appl. Soft Comput. 2023, 145, 110566. [Google Scholar] [CrossRef]
- Huang, Y.; Lei, Y.; Luo, X.; Fu, C. Prediction of compressive strength of rice husk ash concrete: A comparison of different metaheuristic algorithms for optimizing support vector regression. Case Stud. Constr. Mater. 2023, 18, e02201. [Google Scholar] [CrossRef]
The Parameters for ) | Process Mean | Process Standard | Skewness Coefficient Sk |
---|---|---|---|
(1, 0.8) | 1.13 | 1.43 | 2.81 |
(1, 1) | 1 | 1 | 2 |
(1, 2.5) | 0.89 | 0.38 | 0.36 |
(1, 4) | 0.91 | 0.25 | −0.09 |
Layer | Convolution Layer | Pooling Layer | ||
---|---|---|---|---|
Combinational Layer | #1 | Kernel size | 5 | 1 |
Number of kernels | 200 | - | ||
Activation function | ReLU | |||
#2 | Kernel size | 3 | 1 | |
Number of kernels | 70 | - | ||
Activation function | ReLU | |||
#3 | Kernel size | 3 | 1 | |
Number of kernels | 50 | - | ||
Activation function | ReLU |
The Parameters for ) | Censored | ||||
---|---|---|---|---|---|
EWMA | CNNSVR | EWMA | CNNSVR | ||
LCL | LCL | ||||
(1, 0.8) | 0.2 | 0.741 | −0.109 | 0.642 | −0.123 |
0.4 | 0.352 | −0.048 | 0.321 | −0.072 | |
0.6 | 0.122 | −0.018 | 0.112 | −0.028 | |
(1, 1) | 0.2 | 0.776 | −0.110 | 0.675 | −0.130 |
0.4 | 0.419 | −0.045 | 0.387 | −0.077 | |
0.6 | 0.168 | −0.021 | 0.156 | −0.031 | |
(1, 2.5) | 0.2 | 0.823 | −0.059 | 0.773 | −0.088 |
0.4 | 0.712 | −0.054 | 0.679 | −0.078 | |
0.6 | 0.391 | −0.030 | 0.374 | −0.046 | |
(1, 4) | 0.2 | 0.863 | −0.040 | 0.828 | −0.068 |
0.4 | 0.837 | −0.049 | 0.806 | −0.069 | |
0.6 | 0.497 | −0.031 | 0.480 | −0.046 |
Censored | Charts | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.9 | 0.8 | 0.7 | 0.6 | 0.5 | 0.2 | 0.9 | 0.8 | 0.7 | 0.6 | 0.5 | 0.2 | ||
() = (1, 0.8) | () = (1, 1) | ||||||||||||
0.2 | EWMA | 45.8 | 21.4 | 13.8 | 10.3 | 8.0 | 5.4 | 38.5 | 19.0 | 9.5 | 7.2 | 5.4 | 3.4 |
CNNSVR | 71.1# | 19.0 | 13.1 | 7.9 | 4.4 | 2.3 | 60.5# | 18.7 | 9.2 | 5.3 | 3.9 | 1.4 | |
0.4 | EWMA | 57.9 | 35.1 | 26.7 | 21.9 | 18.8 | 13.4 | 51.2 | 30.0 | 22.0 | 17.6 | 14.8 | 10.2 |
CNNSVR | 73.6# | 34.6 | 23.0 | 17.8 | 14.3 | 9.4 | 50.1 | 24.5 | 15.2 | 11.7 | 9.4 | 6.3 | |
0.6 | EWMA | 126.1 | 79.6 | 55.5 | 43.9 | 36.7 | 25.5 | 110.9 | 67.5 | 48.0 | 37.6 | 30.9 | 20.7 |
CNNSVR | 120.9 | 76.4 | 49.5 | 39.0 | 30.7 | 20.6 | 132.0# | 66.2 | 44.8 | 32.0 | 25.6 | 16.1 | |
() = (1, 2.5) | () = (1, 4) | ||||||||||||
0.2 | EWMA | 27.3 | 9.3 | 4.6 | 3.2 | 2.5 | 1.3 | 16.2 | 4.8 | 2.6 | 2.0 | 1.5 | 1.0 |
CNNSVR | 27.2 | 9.3 | 3.4 | 2.2 | 1.6 | 1.0 | 16.1 | 4.3 | 1.7 | 1.2 | 1.1 | 1.0 | |
0.4 | EWMA | 25.2 | 12.5 | 8.2 | 6.1 | 4.9 | 3.1 | 12.1 | 5.3 | 3.4 | 2.6 | 2.1 | 1.3 |
CNNSVR | 29.1# | 11.7 | 6.4 | 4.3 | 3.2 | 1.7 | 10.3 | 3.8 | 2.1 | 1.3 | 1.1 | 1.0 | |
0.6 | EWMA | 225.6 | 99.8 | 45.5 | 27.8 | 19.7 | 10.4 | 1729.1 | 922.1 | 80.7 | 27.3 | 17.0 | 8.1 |
CNNSVR | 256.3# | 89.7 | 42.1 | 22.2 | 15.0 | 7.0 | 847.0 | 534.8 | 79.9 | 23.8 | 12.9 | 5.1 |
Censored | Charts | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.9 | 0.8 | 0.7 | 0.6 | 0.5 | 0.2 | 0.9 | 0.8 | 0.7 | 0.6 | 0.5 | 0.2 | ||
) = (1, 0.8) | ) = (1, 1) | ||||||||||||
0.2 | EWMA | 48.6 | 19.1 | 10.9 | 7.4 | 5.8 | 3.5 | 43.4 | 16.3 | 8.7 | 6.0 | 4.5 | 2.6 |
CNNSVR | 44.8 | 18.2 | 9.6 | 4.3 | 2.6 | 1.4 | 42.9 | 15.0 | 6.9 | 4.5 | 2.8 | 1.3 | |
0.4 | EWMA | 49.5 | 23.0 | 16.0 | 12.5 | 10.3 | 7.1 | 45.5 | 19.6 | 13.4 | 10.1 | 8.3 | 5.6 |
CNNSVR | 61.0# | 21.7 | 12.5 | 7.4 | 5.9 | 3.5 | 50.4# | 17.1 | 10.3 | 6.3 | 4.6 | 2.5 | |
0.6 | EWMA | 114.5 | 58.4 | 34.9 | 24.8 | 20.0 | 12.9 | 100.8 | 49.7 | 30.2 | 21.3 | 16.5 | 10.5 |
CNNSVR | 114.1 | 53.4 | 30.1 | 18.9 | 14.3 | 8.1 | 94.2 | 40.4 | 25.7 | 15.5 | 11.5 | 6.5 | |
() = (1, 2.5) | () = (1, 4) | ||||||||||||
0.2 | EWMA | 28.3 | 9.4 | 4.4 | 3.0 | 2.2 | 1.2 | 15.7 | 4.5 | 2.5 | 1.8 | 1.3 | 1.1 |
CNNSVR | 27.2 | 9.2 | 3.7 | 2.1 | 1.8 | 1.0 | 15.0 | 4.2 | 1.9 | 1.2 | 1.1 | 1.0 | |
0.4 | EWMA | 20.9 | 8.7 | 5.5 | 4.0 | 3.2 | 2.0 | 11.9 | 4.4 | 2.7 | 2.1 | 1.7 | 1.0 |
CNNSVR | 20.2 | 7.1 | 3.0 | 2.0 | 1.4 | 1.0 | 13.4# | 3.4 | 1.6 | 1.2 | 1.0 | 1.0 | |
0.6 | EWMA | 194.1 | 81.1 | 30.1 | 15.9 | 10.7 | 5.5 | 852.2 | 443.5 | 56.0 | 16.3 | 9.3 | 4.2 |
CNNSVR | 171.0 | 66.3 | 24.9 | 10.2 | 5.9 | 2.3 | 634.3 | 343.1 | 50.8 | 12.8 | 6.1 | 1.7 |
The Parameters for | Charts | |||||||
---|---|---|---|---|---|---|---|---|
0.9 | 0.8 | 0.7 | 0.6 | 0.5 | 0.2 | |||
(1, 0.8) | EWMA | 0.014 | 133.0 | 88.0 | 58.0 | 33.1 | 20.1 | 5.2 |
CNNSVR | −0.016 | 92.4 | 86.6 | 56.4 | 31.8 | 28.4# | 5.0 | |
(1, 1) | EWMA | 0.023 | 310.1 | 187.6 | 105.0 | 51.0 | 26.5 | 4.7 |
CNNSVR | −0.030 | 107.6 | 74.7 | 67.6 | 50.5 | 35.2# | 4.6 | |
(1, 2.5) | EWMA | 0.096 | 642.9 | 675.2 | 715.1 | 427.2 | 138.7 | 3.4 |
CNNSVR | −0.109 | 112.3 | 83.3 | 92.4 | 118.4 | 101.7 | 3.2 | |
(1, 4) | EWMA | 0.136 | 5080.1 | 11,220.0 | 12,193.0 | 8056.0 | 3636.0 | 3.5 |
CNNSVR | −0.078 | 317.9 | 1201.1 | 85.2 | 65.3 | 50.1 | 3.3 |
t | Simulation Data | Conditional Expected Value | Sample Mean | EWMA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.734 | 1.581 | 2.115 | 1.665 | 1.851 | 0.734 | 0.997 | 0.997 | 0.997 | 0.997 | 0.944 | 2.385 |
2 | 0.839 | 0.936 | 2.312 | 1.983 | 1.659 | 0.839 | 0.936 | 0.997 | 0.997 | 0.997 | 0.953 | 2.099 |
3 | 0.936 | 0.660 | 1.846 | 2.532 | 2.615 | 0.936 | 0.660 | 0.997 | 0.997 | 0.997 | 0.917 | 1.863 |
No. of Batch | Actual Value | Predicted Value | Error Value | No. of Batch | Actual Value | Predicted Value | Error Value |
---|---|---|---|---|---|---|---|
101 | 0.29 | - | - | 116 | 2.69 | 2.47 | 0.22 |
102 | 2.72 | 2.71 | 0.10 | 117 | 2.68 | 2.74 | −0.06 |
103 | 2.69 | 2.58 | 0.11 | 118 | 2.67 | 2.49 | 0.18 |
104 | 2.74 | 2.03 | 0.71 | 119 | 2.75 | 2.74 | 0.01 |
105 | 0.83 | 0.84 | −0.01 | 120 | 2.33 | 2.60 | −0.27 |
106 | 1.36 | 1.35 | 0.01 | 121 | 1.72 | 2.04 | −0.32 |
107 | 2.70 | 1.92 | 0.78 | 122 | 2.07 | 2.41 | −0.34 |
108 | 2.75 | 2.87 | −0.12 | 123 | 2.35 | 2.59 | −0.24 |
109 | 2.75 | 2.63 | 0.12 | 124 | 0.12 | 0.45 | −0.33 |
110 | 2.75 | 2.37 | 0.38 | 125 | 1.77 | 2.20 | −0.43 |
111 | 2.72 | 2.24 | 0.48 | 126 | 1.85 | 2.41 | −0.56 |
112 | 1.04 | 1.02 | 0.02 | 127 | 0.18 | 1.14 | −0.96 |
113 | 1.01 | 1.08 | −0.07 | 128 | 1.20 | 2.07 | −0.87 |
114 | 0.06 | 0.05 | 0.01 | 129 | 1.04 | 2.10 | −1.06 |
115 | 2.84 | 2.29 | 0.55 | 130 | 0.24 | 1.74 | −1.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, P.-H.; Liao, S.-L. Residual Control Chart Based on a Convolutional Neural Network and Support Vector Regression for Type-I Censored Data with the Weibull Model. Mathematics 2024, 12, 74. https://doi.org/10.3390/math12010074
Lee P-H, Liao S-L. Residual Control Chart Based on a Convolutional Neural Network and Support Vector Regression for Type-I Censored Data with the Weibull Model. Mathematics. 2024; 12(1):74. https://doi.org/10.3390/math12010074
Chicago/Turabian StyleLee, Pei-Hsi, and Shih-Lung Liao. 2024. "Residual Control Chart Based on a Convolutional Neural Network and Support Vector Regression for Type-I Censored Data with the Weibull Model" Mathematics 12, no. 1: 74. https://doi.org/10.3390/math12010074
APA StyleLee, P. -H., & Liao, S. -L. (2024). Residual Control Chart Based on a Convolutional Neural Network and Support Vector Regression for Type-I Censored Data with the Weibull Model. Mathematics, 12(1), 74. https://doi.org/10.3390/math12010074