Data-Adaptive Multivariate Test for Genomic Studies Using Fused Lasso
Abstract
:1. Introduction
2. Methods
2.1. Test Based on Yanai’s Generalized Coefficient of Determination
2.2. Data-Adaptive Test Using Penalized Regression
- Lasso: .
- Ridge: .
- Elastic net: .
- Fused lasso: .
2.3. Other Multivariate Tests
- Univariate regression test: Minimum of the d Bonferroni adjusted p-values from univariate F-test for each variant, i.e., , where denotes the p-value for testing if the regression coefficient is zero in the univariate normal linear regression model with the phenotype y and the jth variant as the explanatory variable (). The Bonferroni correction is the method that adjusts the significance level of individual tests to level , where is the desired family-wise error rate [40], which gives the Bonferroni adjusted p-value as defined in Wright [41]. The univariate regression test does not take the correlation between d variants into account.
- Saturated regression test: F-test for the analysis of variance under the saturated linear regression model with normal error using all d variants simultaneously, i.e., test for the null hypothesis with the saturated normal linear regression model for the phenotype y and the d variants in a given group, where is the regression coefficient for , is the intercept, and is the normal error with mean zero and nonzero variance. The saturated regression test is susceptible to the “curse of dimensionality”, i.e., when d is large relative to n, and cannot be used when .
- SKAT: SKAT is developed for analysis of association between variants in a region and a phenotype [6]. It can be seen as a variance component test in the induced mixed models where regression coefficients are assumed to be independent and follow a distribution with the variance component or a random effect. The statistic of the SKAT forms , where is the estimated mean under the null hypothesis, and is an kernel matrix with genotype data in the region, and a given prespecified weight to give a higher weight for rarer variant [6]. It is known to be robust when variants in a genomic region have both positive and negative effects. SKAT function in R package SKAT is used with default option which conducts the SKAT test of Wu et al. [6].
- Burden test: Burden tests collapse rare variants in a genetic region into a single burden variable, and then the burden variable is tested for an association with the phenotype in the region. It is a score test for an aggregated effect of d variables [8,42], which is made by combining minor allele counts in the region into a single variable. The burden test is powerful if a large proportion of the rare variants in a region are truly causal and influence the phenotype in the same direction. SKAT function in R package SKAT is used with option r.corr=1.
- SKAT-O: A combination of SKAT and burden test [9]. SKAT-O considers optimal test of the form , where and are the SKAT and burden test statistics, respectively, and is a parameter between 0 and 1 to optimally combine and . An optimal is found by minimizing the p-value computed based on with respect to [9]. SKAT function in R package SKAT is used with option method="SKATO".
2.4. Description of Simulation Studies
- Genotypes using 1000 Genomes Project data: For the simulation, whole genome sequencing data from the 1000 Genomes Project, phase 3, is used [43]. A total of 493 individuals from the European population (Utah Residents (CEPH) with Northern and Western European ancestry, i.e., Toscani from Italy, Finnish from Finland, British from England and Scotland, and Iberian from Spain) are extracted. In total, 3,837,178 single nucleotide variants of chromosome 10 are used. Chromosome 10 is often used to evaluate statistical methods that account for linkage disequilibrium in human genetics, e.g., [44,45], and is therefore suitable to evaluate the methods under a practical correlation structure in genotypes. The following quality control is applied: excluding loci with missing rates , Hardy–Weinberg equilibrium test p-value , or minor allele frequency . Then, the pruning based on linkage disequilibrium is applied by the PLINK software version 1.9 using the --indep-pairwise 50 5 0.99 option, resulting in 143,222 variants. From those variants, we randomly choose a set of d contiguous variants as , in which denotes the number of minor alleles, i.e., . Missing genotypes are replaced by the mean of each locus. Fixed sample size is used, and two scenarios for the number of variants or 100 are considered. To see the effect of correlation between variants, an additional simulation is carried out with genotypes that are randomly shuffled for each locus, eliminating the correlation between the variants.
- Simulated genotypes under exchangeable correlation structure: First, d minor allele frequencies are randomly generated from a uniform distribution in . Then, d correlated binary variables (i.e., 0 or 1) are generated using bindata package for R with variance-covariance matrix independently for , in which is the matrix with off-diagonal and diagonal elements of and 1, respectively, giving a binary matrix. Let its rows 1 to n, and rows to be and , respectively. Then, an genotype matrix is made by , whose elements take values in . It is equivalent to the situation where the genotypes are under the Hardy–Weinberg equilibrium. Three scenarios for the pairs of sample size and number of variants are considered, , , and , the aim of which is to confirm type I error control as while is kept constant. Two scenarios and are also considered.
- Random: This scenario is considered for comparing the power of the multivariate tests. Given , let variants have nonzero regression coefficients and remaining variables have zero regression coefficients, and the variants are randomly selected from the d variants. Now, % have nonzero regression coefficients among d variants. Then, nonzero regression coefficients are independently generated from normal distribution , with standard deviation , multiplied by where denotes the minor allele frequency of the corresponding variant. The above scheme gives larger variance of nonzero regression coefficients for smaller nonzero proportion, , and also results in rarer variants having larger effects as commonly considered in polygenic models [46]. For the proportion of nonzero effect variants, three values are considered; , and 0.8.
- Ordered: This scenario is considered for comparing power of the multivariate tests. Given , let variants have nonzero regression coefficients and remaining variables have zero regression coefficients, and the variants are randomly selected from the d variants. Now, % have nonzero regression coefficients among d variants. Then, normal random variables are independently and identically drawn from with standard deviation . Next, negative and positive values simulated above are placed on the lower and upper index sides, respectively. Zero regression coefficients are placed at the remaining indexes in the middle, which are between the indexes of negative and positive values. For example, if , and simulated nonzero values of regression coefficients are , then, the ordered regression coefficients result in . Similar to the above scenario, the simulated values from normal distribution are multiplied by where denotes the minor allele frequency of the corresponding variant. For the proportion of nonzero effect variants, three values are considered, , and 0.8. This scenario considers a situation where there exist positive-effect, non-effect, and negative-effect blocks. The indexes separating each block are unknown. Unlike the above “Random” scenario, the “Ordered” scenario corresponds to the situation where the modeling by the fused lasso is suitable because the regression coefficients have a block structure. It is thus expected that the data-adaptive test using the fused lasso exhibits a higher power than the other methods because competing tests do not explicitly account for the ordering information of regression coefficients.
- Null: This scenario is considered for assessing type I error rates of the multivariate tests. All of the d regression coefficients are set to zero.
3. Results
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Yanai’s Generalized Coefficient of Determination and Its Generalization
References
- Risch, N.; Merikangas, K. The future of genetic studies of complex human diseases. Science 1996, 273, 1516–1517. [Google Scholar] [CrossRef]
- Burton, P.R.; Clayton, D.G.; Cardon, L.R.; Craddock, N.; Deloukas, P.; Duncanson, A.; Kwiatkowski, D.P.; McCarthy, M.I.; Ouwehand, W.H.; Samani, N.J.; et al. Genome-wide association study of 14,000 cases of seven common diseases and 3000 shared controls. Nature 2007, 447, 661–678. [Google Scholar]
- Schaid, D.J.; Rowland, C.M.; Tines, D.E.; Jacobson, R.M.; Poland, G.A. Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am. J. Hum. Genet. 2002, 70, 425–434. [Google Scholar] [CrossRef]
- Dudbridge, F. Likelihood-based association analysis for nuclear families and unrelated subjects with missing genotype data. Hum. Hered. 2008, 66, 87–98. [Google Scholar] [CrossRef]
- Madsen, B.E.; Browning, S.R. A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet. 2009, 5, e1000384. [Google Scholar] [CrossRef]
- Wu, M.C.; Lee, S.; Cai, T.; Li, Y.; Boehnke, M.; Lin, X. Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet. 2011, 89, 82–93. [Google Scholar] [CrossRef]
- Ueki, M.; Kawasaki, Y.; Tamiya, G. Detecting genetic association through shortest paths in a bidirected graph. Genet. Epidemiol. 2017, 41, 481–497. [Google Scholar] [CrossRef]
- Li, B.; Leal, S.M. Methods for detecting associations with rare variants for common diseases: Application to analysis of sequence data. Am. J. Hum. Genet. 2008, 83, 311–321. [Google Scholar] [CrossRef]
- Lee, S.; Wu, M.C.; Lin, X. Optimal tests for rare variant effects in sequencing association studies. Biostatistics 2012, 13, 762–775. [Google Scholar] [CrossRef]
- Lee, S.; Abecasis, G.R.; Boehnke, M.; Lin, X. Rare-variant association analysis: Study designs and statistical tests. Am. J. Hum. Genet. 2014, 95, 5–23. [Google Scholar] [CrossRef]
- Sham, P.C.; Curtis, D. Monte Carlo tests for associations between disease and alleles at highly polymorphic loci. Ann. Hum. Genet. 1995, 59, 97–105. [Google Scholar] [CrossRef]
- Hirotsu, C.; Aoki, S.; Inada, T.; Kitao, Y. An exact test for the association between the disease and alleles at highly polymorphic loci with particular interest in the haplotype analysis. Biometrics 2001, 57, 769–778. [Google Scholar] [CrossRef]
- Freidlin, B.; Zheng, G.; Li, Z.; Gastwirth, J.L. Trend tests for case-control studies of genetic markers: Power, sample size and robustness. Hum. Hered. 2002, 53, 146–152. [Google Scholar] [CrossRef] [PubMed]
- González, J.R.; Carrasco, J.L.; Dudbridge, F.; Armengol, L.; Estivill, X.; Moreno, V. Maximizing association statistics over genetic models. Genet. Epidemiol. 2008, 32, 246–254. [Google Scholar] [CrossRef]
- Li, Q.; Zheng, G.; Li, Z.; Yu, K. Efficient approximation of p-value of the maximum of correlated tests, with applications to genome-wide association studies. Ann. Hum. Genet. 2008, 72, 397–406. [Google Scholar] [CrossRef]
- Hothorn, L.A.; Hothorn, T. Order-restricted scores test for the evaluation of population-based case-control studies when the genetic model is unknown. Biom. J. 2009, 51, 659–669. [Google Scholar] [CrossRef]
- Joo, J.; Kwak, M.; Chen, Z.; Zheng, G. Efficiency robust statistics for genetic linkage and association studies under genetic model uncertainty. Stat. Med. 2010, 29, 158–180. [Google Scholar] [CrossRef]
- Zang, Y.; Fung, W.K. Robust Mantel–Haenszel test under genetic model uncertainty allowing for covariates in case-control association studies. Genet. Epidemiol. 2011, 35, 695–705. [Google Scholar] [CrossRef]
- Ueki, M. On the choice of degrees of freedom for testing gene-gene interactions. Stat. Med. 2014, 33, 4934–4948. [Google Scholar] [CrossRef]
- Ueki, M. Testing conditional mean through regression model sequence using Yanai’s generalized coefficient of determination. Comput. Stat. Data Anal. 2021, 158, 107168. [Google Scholar] [CrossRef]
- Yanai, H. A proposition of generalized method for forward selection of variables. Behaviormetrika 1980, 7, 95–107. [Google Scholar] [CrossRef]
- Cadima, J.F.C.L.; Jolliffe, I.T. Variable selection and the interpretation of principal subspaces. J. Agric. Biol. Environ. Stat. 2001, 6, 62–79. [Google Scholar] [CrossRef]
- Ye, J. On measuring and correcting the effects of data mining and model selection. J. Am. Stat. Assoc. 1998, 93, 120–131. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 1970, 12, 55–67. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2005, 67, 301–320. [Google Scholar] [CrossRef]
- Tibshirani, R.; Saunders, M.; Rosset, S.; Zhu, J.; Knight, K. Sparsity and smoothness via the fused lasso. J. R. Stat. Soc. Ser. B 2005, 67, 91–108. [Google Scholar] [CrossRef]
- Cheng, Y.; Dai, J.Y.; Kooperberg, C. Group association test using a hidden Markov model. Biostatistics 2016, 17, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Bao, M.; Wang, K. Genome-wide association studies using a penalized moving-window regression. Bioinformatics 2017, 33, 3887–3894. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Liu, J.; Ma, S.; Wang, K. Accounting for linkage disequilibrium in genome-wide association studies: A penalized regression method. Stat. Its Interface 2013, 6, 99–115. [Google Scholar] [CrossRef]
- Jolliffe, I. Principal Component Analysis; Springer: New York, NY, USA, 2002. [Google Scholar]
- Efron, B. The estimation of prediction error. J. Am. Stat. Assoc. 2004, 99, 619–632. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Hofling, H.; Tibshirani, R. Pathwise coordinate optimization. Ann. Appl. Stat. 2007, 1, 302–332. [Google Scholar] [CrossRef]
- Tibshirani, R.; Wang, P. Spatial smoothing and hot spot detection for CGH data using the fused lasso. Biostatistics 2008, 9, 18–29. [Google Scholar] [CrossRef]
- Shimamura, K.; Ueki, M.; Kawano, S.; Konishi, S. Bayesian generalized fused lasso modeling via NEG distribution. Commun. Stat.–Theory Methods 2018, 48, 4132–4153. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T.; Tibshirani, R. On the “degrees of freedom” of the lasso. Ann. Stat. 2007, 35, 2173–2192. [Google Scholar] [CrossRef]
- Tibshirani, R.J.; Taylor, J. Degrees of freedom in lasso problems. Ann. Stat. 2012, 40, 1198–1232. [Google Scholar] [CrossRef]
- Dossal, C.; Kachour, M.; Fadili, M.; Peyré, G.; Chesneau, C. The degrees of freedom of the Lasso for general design matrix. Stat. Sin. 2013, 23, 809–828. [Google Scholar] [CrossRef]
- Chen, X.; Lin, Q.; Sen, B. On degrees of freedom of projection estimators with applications to multivariate nonparametric regression. J. Am. Stat. Assoc. 2019, 115, 173–186. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistics notes: Multiple significance tests: The Bonferroni method. BMJ 1995, 310, 170. [Google Scholar] [CrossRef]
- Wright, S.P. Adjusted p-values for simultaneous inference. Biometrics 1992, 48, 1005–1013. [Google Scholar] [CrossRef]
- Lin, D.Y.; Tang, Z.Z. A general framework for detecting disease associations with rare variants in sequencing studies. Am. J. Hum. Genet. 2011, 89, 354–367. [Google Scholar] [CrossRef]
- 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef]
- Howie, B.; Fuchsberger, C.; Stephens, M.; Marchini, J.; Abecasis, G.R. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat. Genet. 2012, 44, 955–959. [Google Scholar] [CrossRef]
- O’Connell, J.; Gurdasani, D.; Delaneau, O.; Pirastu, N.; Ulivi, S.; Cocca, M.; Traglia, M.; Huang, J.; Huffman, J.E.; Rudan, I.; et al. A general approach for haplotype phasing across the full spectrum of relatedness. PLoS Genet. 2014, 10, e1004234. [Google Scholar] [CrossRef]
- Yang, J.; Benyamin, B.; McEvoy, B.P.; Gordon, S.; Henders, A.K.; Nyholt, D.R.; Madden, P.A.; Heath, A.C.; Martin, N.G.; Montgomery, G.W.; et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 2010, 42, 565–569. [Google Scholar] [CrossRef]
- Ueki, M.; Tamiya, G.; for Alzheimer’s Disease Neuroimaging Initiative. Smooth-threshold multivariate genetic prediction incorporating gene–environment interactions. G3 2021, 11, jkab278. [Google Scholar] [CrossRef]
- Bush, W.S.; Oetjens, M.T.; Crawford, D.C. Unravelling the human genome–phenome relationship using phenome-wide association studies. Nat. Rev. Genet. 2016, 17, 129–145. [Google Scholar] [CrossRef]
- Chen, J.; Li, Q.; Chen, H.Y. Testing generalized linear models with high-dimensional nuisance parameters. Biometrika 2023, 110, 83–99. [Google Scholar] [CrossRef]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK Biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef]
n, d, Correlation | (Nominal Level) | Enet | Lasso | Ridge | FLasso | Saturated | Univariate | SKAT | Burden | SKATO |
---|---|---|---|---|---|---|---|---|---|---|
Simulation using 1000 Genomes Project data | ||||||||||
, , Shuffled | 0.1000 | 0.0728 | 0.0724 | 0.0654 | 0.0732 | 0.1019 | 0.0946 | 0.0960 | 0.0977 | 0.0975 |
0.0100 | 0.0062 | 0.0061 | 0.0051 | 0.0069 | 0.0103 | 0.0104 | 0.0093 | 0.0094 | 0.0095 | |
0.0010 | 0.0005 | 0.0005 | 0.0004 | 0.0008 | 0.0009 | 0.0012 | 0.0010 | 0.0009 | 0.0010 | |
0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0003 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | |
, , Shuffled | 0.1000 | 0.0761 | 0.0756 | 0.0679 | 0.0748 | 0.1007 | 0.0967 | 0.0993 | 0.0984 | 0.1000 |
0.0100 | 0.0068 | 0.0067 | 0.0057 | 0.0067 | 0.0100 | 0.0099 | 0.0089 | 0.0101 | 0.0098 | |
0.0010 | 0.0004 | 0.0004 | 0.0004 | 0.0005 | 0.0007 | 0.0010 | 0.0007 | 0.0012 | 0.0009 | |
0.0001 | 0.0001 | 0.0001 | 0.0000 | 0.0001 | 0.0001 | 0.0001 | 0.0000 | 0.0001 | 0.0001 | |
, | 0.1000 | 0.0671 | 0.0643 | 0.0131 | 0.0775 | 0.1001 | 0.0454 | 0.0963 | 0.0974 | 0.0978 |
0.0100 | 0.0056 | 0.0052 | 0.0006 | 0.0072 | 0.0097 | 0.0051 | 0.0092 | 0.0092 | 0.0100 | |
0.0010 | 0.0004 | 0.0004 | 0.0000 | 0.0009 | 0.0010 | 0.0006 | 0.0008 | 0.0009 | 0.0009 | |
0.0001 | 0.0001 | 0.0001 | 0.0000 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0000 | 0.0001 | |
, | 0.1000 | 0.0646 | 0.0611 | 0.0052 | 0.0771 | 0.0985 | 0.0434 | 0.0947 | 0.0993 | 0.0994 |
0.0100 | 0.0053 | 0.0048 | 0.0002 | 0.0070 | 0.0102 | 0.0050 | 0.0089 | 0.0091 | 0.0104 | |
0.0010 | 0.0003 | 0.0003 | 0.0000 | 0.0006 | 0.0009 | 0.0005 | 0.0008 | 0.0007 | 0.0008 | |
0.0001 | 0.0001 | 0.0001 | 0.0000 | 0.0001 | 0.0001 | 0.0000 | 0.0001 | 0.0000 | 0.0001 | |
Simulation under exchangeable correlation structure | ||||||||||
, , | 0.1000 | 0.1020 | 0.1015 | 0.0907 | 0.1017 | 0.0988 | 0.0877 | 0.0995 | 0.1003 | 0.1019 |
0.0100 | 0.0113 | 0.0112 | 0.0096 | 0.0119 | 0.0105 | 0.0102 | 0.0099 | 0.0097 | 0.0107 | |
0.0010 | 0.0012 | 0.0012 | 0.0008 | 0.0016 | 0.0011 | 0.0011 | 0.0012 | 0.0007 | 0.0011 | |
0.0001 | 0.0002 | 0.0002 | 0.0001 | 0.0004 | 0.0002 | 0.0001 | 0.0000 | 0.0002 | 0.0001 | |
, , | 0.1000 | 0.1014 | 0.1006 | 0.0881 | 0.1018 | 0.0986 | 0.0645 | 0.1006 | 0.1014 | 0.1035 |
0.0100 | 0.0103 | 0.0102 | 0.0083 | 0.0108 | 0.0097 | 0.0077 | 0.0095 | 0.0098 | 0.0107 | |
0.0010 | 0.0012 | 0.0012 | 0.0008 | 0.0015 | 0.0011 | 0.0008 | 0.0010 | 0.0009 | 0.0012 | |
0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0004 | 0.0001 | 0.0000 | 0.0001 | 0.0001 | 0.0001 | |
, , | 0.1000 | 0.0978 | 0.0974 | 0.0905 | 0.0968 | 0.0991 | 0.0860 | 0.0980 | 0.1025 | 0.1031 |
0.0100 | 0.0095 | 0.0095 | 0.0086 | 0.0100 | 0.0098 | 0.0094 | 0.0091 | 0.0093 | 0.0101 | |
0.0010 | 0.0011 | 0.0011 | 0.0010 | 0.0012 | 0.0011 | 0.0010 | 0.0010 | 0.0008 | 0.0010 | |
0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0002 | 0.0001 | 0.0000 | 0.0001 | 0.0001 | 0.0001 | |
, , | 0.1000 | 0.1002 | 0.0996 | 0.0893 | 0.0999 | 0.1013 | 0.0594 | 0.0996 | 0.0997 | 0.1041 |
0.0100 | 0.0098 | 0.0097 | 0.0081 | 0.0100 | 0.0100 | 0.0077 | 0.0095 | 0.0100 | 0.0107 | |
0.0010 | 0.0010 | 0.0009 | 0.0008 | 0.0011 | 0.0010 | 0.0010 | 0.0011 | 0.0010 | 0.0012 | |
0.0001 | 0.0001 | 0.0001 | 0.0000 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | |
, , | 0.1000 | 0.0782 | 0.0777 | 0.0722 | 0.0769 | 0.1012 | 0.0884 | 0.1017 | 0.0987 | 0.1037 |
0.0100 | 0.0066 | 0.0065 | 0.0057 | 0.0064 | 0.0098 | 0.0108 | 0.0095 | 0.0103 | 0.0105 | |
0.0010 | 0.0004 | 0.0004 | 0.0003 | 0.0004 | 0.0008 | 0.0012 | 0.0011 | 0.0010 | 0.0012 | |
0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0001 | 0.0001 | 0.0000 | |
, , | 0.1000 | 0.0773 | 0.0767 | 0.0684 | 0.0761 | 0.0997 | 0.0572 | 0.1005 | 0.1004 | 0.1050 |
0.0100 | 0.0066 | 0.0066 | 0.0053 | 0.0065 | 0.0100 | 0.0069 | 0.0106 | 0.0101 | 0.0115 | |
0.0010 | 0.0006 | 0.0005 | 0.0004 | 0.0005 | 0.0010 | 0.0009 | 0.0010 | 0.0010 | 0.0011 | |
0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0001 | 0.0002 | 0.0001 | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ueki, M. Data-Adaptive Multivariate Test for Genomic Studies Using Fused Lasso. Mathematics 2024, 12, 1422. https://doi.org/10.3390/math12101422
Ueki M. Data-Adaptive Multivariate Test for Genomic Studies Using Fused Lasso. Mathematics. 2024; 12(10):1422. https://doi.org/10.3390/math12101422
Chicago/Turabian StyleUeki, Masao. 2024. "Data-Adaptive Multivariate Test for Genomic Studies Using Fused Lasso" Mathematics 12, no. 10: 1422. https://doi.org/10.3390/math12101422
APA StyleUeki, M. (2024). Data-Adaptive Multivariate Test for Genomic Studies Using Fused Lasso. Mathematics, 12(10), 1422. https://doi.org/10.3390/math12101422