Incorporating the Third Law of Geography with Spatial Attention Module–Convolutional Neural Network–Transformer for Fine-Grained Non-Stationary Air Quality Predictive Learning
Abstract
:1. Introduction
- (1)
- The Third Law of Geography is incorporated. The spatial clustering results of POI data are used as a characterization parameter to fully consider the correlation and synergism among different geospatial monitoring stations. The spatial anisotropy analysis is also utilized to optimize the impacts of spatial factors to fully consider the spatial variability of the atmospheric physical processes of air pollution.
- (2)
- This study notes the advantages of the hybrid deep learning model based on fusion mechanisms in dealing with spatial–temporal dependencies. SAM, CNN, and Transformer are integrated with the overall structural design to fully extract the spatial–temporal distribution features of the stations; it overcomes the problems existing in typical deep learning methods, such as gradient vanishing, gradient explosion, etc.
- (3)
- Shapley’s analysis is employed to assess the importance of air pollutant concentrations, meteorological factors, and correlated stations’ influences on the model predictive learning, providing direction for further modeling.
2. Related Works
2.1. The Laws of Geography in Spatial–Temporal Forecasting
2.2. Spatial Feature Extraction
2.3. Temporal Feature Extraction
2.4. Spatial–Temporal Feature Extraction
3. Methodology
3.1. The Framework of The Proposed Approach
3.2. Analysis of Spatial Anisotropy
3.3. Spatial Clustering
Algorithm 1 Proposed “Spatial clustering” Approach |
Input: // represents station location information and POI Information, respectively; |
Output: ; |
//initialize to a matrix of dimensions,
to a matrix of dimensions; 2: for in do 3: for in do 4: compute . according to Equation (2); 5: if do 6: update ; 7: //Each is regarded as a separate cluster; 8: while do 9: for in do 10: for in do 11: according to Equations (3) and (4); 12: ; 13: find the most similar clusters: and ; 14: merge and : ; 15: for do 16: ; 17: ; 18: return ; |
3.4. SAM–CNN–Transformer Network
4. Results
4.1. Data and Study Area
4.2. Evaluation Metrics
4.3. The Software and Hardware Details
4.4. Hyperparameter Tuning Based on Bayesian Optimization
4.5. Correlated Station Selection
4.5.1. Analysis of Spatial Anisotropy
4.5.2. Spatial Clustering
4.6. Implementation Details and Comparative Analysis
4.6.1. Experiment I: Verifying The Effectiveness of The Proposed Approach
4.6.2. Experiment II: Testing The Predictive Ability of Various Exogenous Variables
4.6.3. Experiment III: Verifying The Different Modules of The Proposed Approach
4.6.4. Experiment IV: Verifying The Generalization Ability of The Proposed Approach
4.7. Shapley’s Analysis
5. Discussion
5.1. Analysis of The Impact of The Third Law of Geography in Predictive Learning
5.2. Impact of Different Clustering Algorithms
5.3. Advantages of The Proposed Approach
6. Conclusions and Future Directions
6.1. Summary of Experimental Results
6.2. Caveats and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Han, L.; Wei, H.; Tan, X.; Zhou, W.; Li, W.; Qian, Y. Linking Urbanization and Air Quality Together: A Review and a Perspective on the Future Sustainable Urban Development. J. Clean. Prod. 2022, 346, 130988. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, L.; Liao, H. Multi-Pollutant Air Pollution and Associated Health Risks in China from 2014 to 2020. Atmos. Environ. 2022, 268, 118829. [Google Scholar] [CrossRef]
- Duan, R.-R.; Hao, K.; Yang, T. Air Pollution and Chronic Obstructive Pulmonary Disease. Chronic Dis. Transl. Med. 2020, 6, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Glencross, D.A.; Ho, T.-R.; Camiña, N.; Hawrylowicz, C.M.; Pfeffer, P.E. Air Pollution and Its Effects on the Immune System. Free Radic. Biol. Med. 2020, 151, 56–68. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S. Air Quality Index Forecast in Beijing Based on CNN-LSTM Multi-Model. Chemosphere 2022, 308, 136180. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Zhu, R.; Lin, J.C.-W. An Air Quality Prediction Model Based on Improved Vanilla LSTM with Multichannel Input and Multiroute Output. Expert Syst. Appl. 2023, 211, 118422. [Google Scholar] [CrossRef]
- Seng, D.; Zhang, Q.; Zhang, X.; Chen, G.; Chen, X. Spatiotemporal Prediction of Air Quality Based on LSTM Neural Network. Alex. Eng. J. 2021, 60, 2021–2032. [Google Scholar] [CrossRef]
- Mao, W.; Jiao, L.; Wang, W.; Wang, J.; Tong, X.; Zhao, S. A Hybrid Integrated Deep Learning Model for Predicting Various Air Pollutants. GIScience Remote Sens. 2021, 58, 1395–1412. [Google Scholar] [CrossRef]
- Carreño, G.; López-Cortés, X.A.; Marchant, C. Machine Learning Models to Predict Critical Episodes of Environmental Pollution for PM2.5 and PM10 in Talca, Chile. Mathematics 2022, 10, 373. [Google Scholar] [CrossRef]
- Wu, C.; He, H.; Song, R.; Zhu, X.; Peng, Z.; Fu, Q.; Pan, J. A Hybrid Deep Learning Model for Regional O3 and NO2 Concentrations Prediction Based on Spatiotemporal Dependencies in Air Quality Monitoring Network. Environ. Pollut. 2023, 320, 121075. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, Y.; Yong, R.; Zou, G.; Yang, R.; Pan, J.; Li, M. A Spatial Correlation Prediction Model of Urban PM2.5 Concentration Based on Deconvolution and LSTM. Neurocomputing 2023, 544, 126280. [Google Scholar] [CrossRef]
- Tong, Y.; Luo, K.; Li, R.; Pei, L.; Li, A.; Yang, M.; Xu, Q. Association between Multi-Pollutant Mixtures Pollution and Daily Cardiovascular Mortality: An Exploration of Exposure-Response Relationship. Atmos. Environ. 2018, 186, 136–143. [Google Scholar] [CrossRef]
- Lin, M.-D.; Liu, P.-Y.; Huang, C.-W.; Lin, Y.-H. The Application of Strategy Based on LSTM for the Short-Term Prediction of PM2.5 in City. Sci. Total Environ. 2024, 906, 167892. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Li, H.; Sun, S.; Li, Y. PM2.5 Concentration Forecasting through a Novel Multi-Scale Ensemble Learning Approach Considering Intercity Synergy. Sustain. Cities Soc. 2022, 85, 104049. [Google Scholar] [CrossRef]
- Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Zhu, A.-X.; Turner, M. How Is the Third Law of Geography Different? Ann. GIS 2022, 28, 57–67. [Google Scholar] [CrossRef]
- Sui, S.; Han, Q. Multi-View Multi-Task Spatiotemporal Graph Convolutional Network for Air Quality Prediction. Sci. Total Environ. 2023, 893, 164699. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, Y.; Adams, M.D.; Liu, M.; Li, B.; Shi, T.; Li, C. Natural and Human Factors Influencing Urban Particulate Matter Concentrations in Central Heating Areas with Long-Term Wearable Monitoring Devices. Environ. Res. 2022, 215, 114393. [Google Scholar] [CrossRef] [PubMed]
- Nurcahyanto, H.; Prihatno, A.T.; Alam, M.M.; Rahman, M.H.; Jahan, I.; Shahjalal, M.; Jang, Y.M. Multilevel RNN-Based PM10 Air Quality Prediction for Industrial Internet of Things Applications in Cleanroom Environment. Wirel. Commun. Mob. Comput. 2022, 2022, e1874237. [Google Scholar] [CrossRef]
- Zhu, J.; Deng, F.; Zhao, J.; Zheng, H. Attention-Based Parallel Networks (APNet) for PM2.5 Spatiotemporal Prediction. Sci. Total Environ. 2021, 769, 145082. [Google Scholar] [CrossRef]
- Zou, X.; Zhao, J.; Zhao, D.; Sun, B.; He, Y.; Fuentes, S. Air Quality Prediction Based on a Spatiotemporal Attention Mechanism. Mob. Inf. Syst. 2021, 2021, e6630944. [Google Scholar] [CrossRef]
- Ng, W.; Minasny, B.; McBratney, A. Convolutional Neural Network for Soil Microplastic Contamination Screening Using Infrared Spectroscopy. Sci. Total Environ. 2020, 702, 134723. [Google Scholar] [CrossRef] [PubMed]
- Kabir, S.; Islam, R.U.; Hossain, M.S.; Andersson, K. An Integrated Approach of Belief Rule Base and Convolutional Neural Network to Monitor Air Quality in Shanghai. Expert Syst. Appl. 2022, 206, 117905. [Google Scholar] [CrossRef]
- Qi, Y.; Li, Q.; Karimian, H.; Liu, D. A Hybrid Model for Spatiotemporal Forecasting of PM2.5 Based on Graph Convolutional Neural Network and Long Short-Term Memory. Sci. Total Environ. 2019, 664, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Liao, J.; Yang, J.; Sun, W.; Nong, M.; Li, F. Multi-Hour and Multi-Site Air Quality Index Forecasting in Beijing Using CNN, LSTM, CNN-LSTM, and Spatiotemporal Clustering. Expert Syst. Appl. 2021, 169, 114513. [Google Scholar] [CrossRef]
- Wu, S.; Xiao, X.; Ding, Q.; Zhao, P.; Wei, Y.; Huang, J. Adversarial Sparse Transformer for Time Series Forecasting. Adv. Neural Inf. Process. Syst. 2020, 33, 17105–17115. [Google Scholar]
- Wang, J.; Song, G. A Deep Spatial-Temporal Ensemble Model for Air Quality Prediction. Neurocomputing 2018, 314, 198–206. [Google Scholar] [CrossRef]
- Goodchild, M.F. GIScience, Geography, Form, and Process. Ann. Assoc. Am. Geogr. 2004, 94, 709–714. [Google Scholar] [CrossRef]
- Zhao, F.-H.; Huang, J.; Zhu, A.-X. Spatial Prediction of Groundwater Level Change Based on the Third Law of Geography. Int. J. Geogr. Inf. Sci. 2023, 37, 2129–2149. [Google Scholar] [CrossRef]
- Hou, J.; Wang, Y.; Hou, B.; Zhou, J.; Tian, Q. Spatial Simulation and Prediction of Air Temperature Based on CNN-LSTM. Appl. Artif. Intell. 2023, 37, 2166235. [Google Scholar] [CrossRef]
- Mao, Y.; Lee, S. Deep Convolutional Neural Network for Air Quality Prediction. J. Phys. Conf. Ser. 2019, 1302, 032046. [Google Scholar] [CrossRef]
- Xiao, X.; Jin, Z.; Wang, S.; Xu, J.; Peng, Z.; Wang, R.; Shao, W.; Hui, Y. A Dual-Path Dynamic Directed Graph Convolutional Network for Air Quality Prediction. Sci. Total Environ. 2022, 827, 154298. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wu, F.; Yang, Y. Air Pollution Measurement Based on Hybrid Convolutional Neural Network with Spatial-and-Channel Attention Mechanism. Expert Syst. Appl. 2023, 233, 120921. [Google Scholar] [CrossRef]
- Fong, I.H.; Li, T.; Fong, S.; Wong, R.K.; Tallón-Ballesteros, A.J. Predicting Concentration Levels of Air Pollutants by Transfer Learning and Recurrent Neural Network. Knowl.-Based Syst. 2020, 192, 105622. [Google Scholar] [CrossRef]
- Wang, B.; Kong, W.; Zhao, P. An Air Quality Forecasting Model Based on Improved Convnet and RNN. Soft Comput. 2021, 25, 9209–9218. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Lei, T.-C.; Yao, S.; Wang, H.-P. PM2.5 Prediction Model Based on Combinational Hammerstein Recurrent Neural Networks. Mathematics 2020, 8, 2178. [Google Scholar] [CrossRef]
- Liu, X.; Du, H.; Yu, J. A Forecasting Method for Non-Equal Interval Time Series Based on Recurrent Neural Network. Neurocomputing 2023, 556, 126648. [Google Scholar] [CrossRef]
- Jin, X.-B.; Yang, N.-X.; Wang, X.-Y.; Bai, Y.-T.; Su, T.-L.; Kong, J.-L. Deep Hybrid Model Based on EMD with Classification by Frequency Characteristics for Long-Term Air Quality Prediction. Mathematics 2020, 8, 214. [Google Scholar] [CrossRef]
- Liang, Y.; Xia, Y.; Ke, S.; Wang, Y.; Wen, Q.; Zhang, J.; Zheng, Y.; Zimmermann, R. AirFormer: Predicting Nationwide Air Quality in China with Transformers. Proc. AAAI Conf. Artif. Intell. 2023, 37, 14329–14337. [Google Scholar] [CrossRef]
- Van Houdt, G.; Mosquera, C.; Nápoles, G. A Review on the Long Short-Term Memory Model. Artif. Intell. Rev. 2020, 53, 5929–5955. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, J.; Zeng, P.; Meng, X. Air Pollutant Concentration Prediction Based on GRU Method. J. Phys. Conf. Ser. 2019, 1168, 032058. [Google Scholar] [CrossRef]
- Liu, Q.; Li, J.; Lu, Z. ST-Tran: Spatial-Temporal Transformer for Cellular Traffic Prediction. IEEE Commun. Lett. 2021, 25, 3325–3329. [Google Scholar] [CrossRef]
- Reza, S.; Ferreira, M.C.; Machado, J.J.M.; Tavares, J.M.R.S. A Multi-Head Attention-Based Transformer Model for Traffic Flow Forecasting with a Comparative Analysis to Recurrent Neural Networks. Expert Syst. Appl. 2022, 202, 117275. [Google Scholar] [CrossRef]
- Pundir, I.; Aggarwal, N.; Singh, S. Time-Series Based Prediction of Air Quality Index Using Various Machine Learning Models. In Proceedings of the Decision Intelligence Solutions; Hasteer, N., McLoone, S., Khari, M., Sharma, P., Eds.; Springer Nature: Singapore, 2023; pp. 61–70. [Google Scholar]
- Bekkar, A.; Hssina, B.; Douzi, S.; Douzi, K. Air-Pollution Prediction in Smart City, Deep Learning Approach. J. Big Data 2021, 8, 161. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Liu, S.; Yao, X.; Peng, L.; Li, X.; Hu, Y.; Chi, T. A Novel Spatiotemporal Convolutional Long Short-Term Neural Network for Air Pollution Prediction. Sci. Total Environ. 2019, 654, 1091–1099. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Qin, M.; He, Y.; Mi, X.; Yu, C. A New Multi-Data-Driven Spatiotemporal PM2.5 Forecasting Model Based on an Ensemble Graph Reinforcement Learning Convolutional Network. Atmos. Pollut. Res. 2021, 12, 101197. [Google Scholar] [CrossRef]
- Huang, Y.; Ying, J.J.-C.; Tseng, V.S. Spatio-Attention Embedded Recurrent Neural Network for Air Quality Prediction. Knowl.-Based Syst. 2021, 233, 107416. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. Proc. AAAI Conf. Artif. Intell. 2021, 35, 11106–11115. [Google Scholar] [CrossRef]
Type | Variable | Unit | |
---|---|---|---|
POI data | POI | First-level classification | - |
Longitude | - | ||
Latitude | - | ||
Air quality data | Particulate pollutant | PM2.5 | μg/m3 |
PM10 | μg/m3 | ||
Gaseous pollutant | CO | μg/m3 | |
NO2 | μg/m3 | ||
SO2 | μg/m3 | ||
O3 | μg/m3 | ||
Meteorological data | Meteorological factor | Pressure | hPa |
Humidity | % | ||
Temperature | °C | ||
Wind_direction | - | ||
Wind_speed | km/h |
Hyperparameter | Value |
---|---|
num_ layers | 2 |
num_heads | 8 |
d_model | 512 |
d_ff | 2048 |
dropout | 0.05 |
batch size | 1 |
learning rate | 1 × 10−4 |
time step | 11 |
optimizer | Adam |
Experiments | Station | Model Notation | Model Description |
---|---|---|---|
Ours | The proposed approach | ||
Experiment I: verifying the effectiveness of the proposed approach | S9 | model1 | ARIMA |
model2 | SVR | ||
model3 | GRU | ||
model4 | LSTM | ||
model5 | TCN | ||
model6 | Informer | ||
Experiment II: testing the predictive ability of various exogenous variables | S9 | model7 | The proposed approach, disregarding meteorological influencing factors |
model8 | The proposed approach, disregarding regional influencing factors | ||
Experiment III: verifying the different modules of the proposed approach | S9 | model9 | Transformer |
model10 | CNN–Transformer | ||
model11 | SAM–Transformer | ||
Experiment IV: verifying the generalization ability of the proposed approach | S6, S25, S41 | model1 | ARIMA |
model2 | SVR | ||
model3 | GRU | ||
model4 | LSTM | ||
model5 | TCN | ||
model6 | Informer |
Model | PM2.5 | PM10 | ||||
---|---|---|---|---|---|---|
RMSE | MAE | R2 | RMSE | MAE | R2 | |
model1 | 3.638 | 1.553 | 0.882 | 5.521 | 2.698 | 0.883 |
model2 | 2.382 | 1.913 | 0.928 | 3.318 | 2.376 | 0.939 |
model3 | 2.353 | 1.645 | 0.939 | 3.521 | 2.429 | 0.941 |
model4 | 2.244 | 1.524 | 0.946 | 4.583 | 3.365 | 0.911 |
model5 | 2.336 | 1.583 | 0.942 | 3.451 | 2.340 | 0.945 |
model6 | 2.501 | 1.722 | 0.935 | 4.436 | 3.166 | 0.914 |
Ours | 2.168 | 1.454 | 0.953 | 3.331 | 2.230 | 0.948 |
Model | PM2.5 | PM10 | ||||
---|---|---|---|---|---|---|
RMSE | MAE | R2 | RMSE | MAE | R2 | |
model7 | 2.193 | 1.507 | 0.946 | 3.455 | 2.351 | 0.939 |
model8 | 2.505 | 1.769 | 0.936 | 4.122 | 2.909 | 0.930 |
Ours | 2.168 | 1.454 | 0.953 | 3.331 | 2.230 | 0.948 |
Model | PM2.5 | PM10 | ||||
---|---|---|---|---|---|---|
RMSE | MAE | R2 | RMSE | MAE | R2 | |
model9 | 3.432 | 2.292 | 0.945 | 3.431 | 2.255 | 0.945 |
model10 | 2.173 | 1.458 | 0.950 | 3.426 | 2.286 | 0.945 |
model11 | 2.128 | 1.416 | 0.952 | 3.436 | 2.263 | 0.947 |
Ours | 2.168 | 1.454 | 0.953 | 3.331 | 2.230 | 0.948 |
Station | Model | PM2.5 | PM10 | ||||
---|---|---|---|---|---|---|---|
RMSE | MAE | R2 | RMSE | MAE | R2 | ||
S6 | model1 | 5.749 | 2.452 | 0.814 | 9.137 | 5.849 | 0.801 |
model2 | 6.405 | 5.597 | 0.638 | 8.909 | 5.613 | 0.811 | |
model3 | 4.113 | 2.561 | 0.895 | 5.439 | 3.314 | 0.927 | |
model4 | 3.670 | 2.241 | 0.918 | 5.207 | 2.991 | 0.932 | |
model5 | 4.102 | 2.417 | 0.862 | 5.303 | 3.414 | 0.921 | |
model6 | 4.461 | 2.588 | 0.871 | 7.647 | 4.850 | 0.868 | |
Ours | 3.435 | 1.959 | 0.934 | 5.124 | 2.877 | 0.935 | |
S25 | model1 | 2.625 | 1.282 | 0.831 | 5.192 | 2.026 | 0.837 |
model2 | 2.781 | 2.299 | 0.674 | 4.203 | 2.725 | 0.873 | |
model3 | 1.693 | 1.101 | 0.904 | 3.389 | 2.447 | 0.905 | |
model4 | 1.663 | 1.096 | 0.929 | 3.383 | 2.201 | 0.927 | |
model5 | 1.471 | 0.872 | 0.932 | 3.949 | 2.599 | 0.881 | |
model6 | 1.843 | 1.158 | 0.901 | 4.389 | 2.850 | 0.864 | |
Ours | 1.444 | 0.853 | 0.933 | 2.897 | 1.687 | 0.939 | |
S41 | model1 | 3.121 | 2.368 | 0.879 | 4.237 | 4.237 | 0.797 |
model2 | 3.584 | 2.739 | 0.832 | 11.567 | 7.540 | 0.654 | |
model3 | 2.879 | 2.018 | 0.893 | 10.099 | 5.188 | 0.634 | |
model4 | 2.417 | 1.623 | 0.935 | 9.073 | 4.697 | 0.746 | |
model5 | 2.363 | 1.518 | 0.922 | 10.004 | 5.674 | 0.638 | |
model6 | 2.698 | 1.825 | 0.907 | 9.282 | 5.080 | 0.739 | |
Ours | 2.410 | 1.617 | 0.939 | 8.536 | 4.367 | 0.788 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, S.; Zhang, Y.; Liu, X.; Mei, Q.; Zhi, X.; Fei, X. Incorporating the Third Law of Geography with Spatial Attention Module–Convolutional Neural Network–Transformer for Fine-Grained Non-Stationary Air Quality Predictive Learning. Mathematics 2024, 12, 1457. https://doi.org/10.3390/math12101457
Lin S, Zhang Y, Liu X, Mei Q, Zhi X, Fei X. Incorporating the Third Law of Geography with Spatial Attention Module–Convolutional Neural Network–Transformer for Fine-Grained Non-Stationary Air Quality Predictive Learning. Mathematics. 2024; 12(10):1457. https://doi.org/10.3390/math12101457
Chicago/Turabian StyleLin, Shaofu, Yuying Zhang, Xiliang Liu, Qiang Mei, Xiaoying Zhi, and Xingjia Fei. 2024. "Incorporating the Third Law of Geography with Spatial Attention Module–Convolutional Neural Network–Transformer for Fine-Grained Non-Stationary Air Quality Predictive Learning" Mathematics 12, no. 10: 1457. https://doi.org/10.3390/math12101457
APA StyleLin, S., Zhang, Y., Liu, X., Mei, Q., Zhi, X., & Fei, X. (2024). Incorporating the Third Law of Geography with Spatial Attention Module–Convolutional Neural Network–Transformer for Fine-Grained Non-Stationary Air Quality Predictive Learning. Mathematics, 12(10), 1457. https://doi.org/10.3390/math12101457