Fixed Point Results for Compatible Mappings in Extended Parametric Sb-Metric Spaces
Abstract
:1. Introduction
2. Basic Principles and Relevant Literature
- 1.
- ;
- 2.
- if and only if ;
- 3.
- .
- 1.
- if and only if ;
- 2.
- .
- for all if and only if ;
- .
- .
- 1.
- Convergent if it converges to ν if and only if for all and for all .
- 2.
- Cauchy sequence if for all n and m, with , and for all
3. Common Fixed Point Theorems for Pair of Self Maps
- Choice-1
- ;
- Choice-2
- .
- 1.
- 2.
- and are continuous;
- 3.
- The pair and are compatible;
- 4.
- For all and for all , there exists a function such that
- Choice-1
- ;
- Choice-2
- .
4. Corollaries and Numerical Illustrations
- 1.
- 2.
- and are continuous;
- 3.
- The pair and are compatible;
- 4.
- For all and for all , suppose that
5. Common Solution of System of Integral Equations: Existence and Uniqueness
- (i)
- is continuous;
- (ii)
- is continuous;
- (iii)
- For every
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fréchet, M. Sur quelques points du calcul fonctionnel. Rend. Circ. Mat. Palermo 1906, 22, 1–74. [Google Scholar] [CrossRef]
- Wilson, W.A. On Quasi-Metric Spaces. Am. J. Math. 1931, 53, 675–684. [Google Scholar] [CrossRef]
- Berinde, V. Generalized contractions in quasimetric spaces. In Seminar on Fixed Point Theory; “Babeş-Bolyai” University: Cluj-Napoca, Romania, 1993; Volume 93, pp. 3–9. [Google Scholar]
- Bakhtin, I.A. The contraction mapping principle in almost metric space. In Functional Analysis; Ul’yanovskiy Gosudarstvennyy Pedagogicheskiy Institute: Ulyanovskiy, Russia, 1989; pp. 26–37. [Google Scholar]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
- Zeyada, F.M.; Hassan, G.H.; Ahmed, M.A. A generalization of a fixed point theorem due to Hitzler and Seda in dislocated quasi-metric spaces. Arab. J. Sci. Eng. Sect. A Sci. 2006, 31, 111–114. [Google Scholar]
- Sedghi, S.; Shobe, N.; Aliouche, A. A generalization of fixed point theorems in S-metric spaces. Mat. Vesn. 2012, 64, 258–266. [Google Scholar]
- Hussain, N.; Khaleghizadeh, S.; Salimi, P.; Abdou, A.A.N. A new approach to fixed point results in triangular intuitionistic fuzzy metric spaces. Abstr. Appl. Anal. 2014, 2014, 690139. [Google Scholar] [CrossRef]
- Taş, N.; Özgür, N.Y.L. On parametric S-metric spaces and fixed-point type theorems for expansive mappings. J. Math. 2016, 2016, 4746732. [Google Scholar] [CrossRef]
- Souayah, N.; Mlaiki, N. A fixed point theorem in Sb-metric spaces. J. Math. Comput. Sci. 2016, 16, 131–139. [Google Scholar] [CrossRef]
- Rohen, Y.; Došenović, T.; Radenovixcx, S. A note on the paper a fixed point theorems in Sb-metric spaces. Filomat 2017, 31, 3335–3346. [Google Scholar] [CrossRef]
- Mlaiki, N. Extended Sb-metric spaces. J. Math. Anal. 2018, 9, 124–135. [Google Scholar]
- Brzdek, J.; Karapnar, E.; Petrucel, A. A fixed point theorem and the Ulam stability in generalized dq-metric spaces. J. Math. Anal. Appl. 2018, 467, 501–520. [Google Scholar] [CrossRef]
- Taş, N.; Özgür, N.Y. Some fixed-point results on parametric Nb-metric spaces. Commun. Korean Math. Soc. 2018, 33, 943–960. [Google Scholar] [CrossRef]
- Mani, N.; Sharma, A.; Shukla, R. Fixed point results via real-valued function satisfying integral type rational contraction. Abstr. Appl. Anal. 2023, 2023, 2592507. [Google Scholar] [CrossRef]
- Aydi, H.; Bota, M.F.; Karapınar, E.; Mitrović, S. A fixed point theorem for set-valued quasi-contractions in b-metric spaces. Fixed Point Theory Appl. 2012, 2012, 88. [Google Scholar] [CrossRef]
- Bota, M.; Molnár, A.; Varga, C. On Ekeland’s variational principle in b-metric spaces. Fixed Point Theory 2011, 12, 21–28. [Google Scholar]
- Roy, K.; Saha, M. Branciari Sb-metric space and related fixed point theorems with an application. Appl. Math. E-Notes 2022, 22, 8–17. [Google Scholar]
- Rezaee, M.M.; Sedghi, S. Coupled fixed point theorems under nonlinear contractive conditions in S-metric spaces. Thai J. Math. 2021, 19, 1519–1526. [Google Scholar]
- Jungck, G. Commuting mappings and fixed points. Am. Math. Mon. 1976, 83, 261–263. [Google Scholar] [CrossRef]
- Bhardwaj, V.K.; Gupta, V.; Mani, N. Common fixed point theorems without continuity and compatible property of maps. Bol. Soc. Parana. Mat. 2017, 35, 67–77. [Google Scholar] [CrossRef]
- Gupta, V.; Mani, N.; Ansari, A.H. Generalized integral type contraction and common fixed point theorems using an auxiliary function. Adv. Math. Sci. Appl. 2018, 27, 263–275. [Google Scholar]
- Gupta, V.; Jungck, G.; Mani, N. Some novel fixed point theorems in partially ordered metric spaces. AIMS Math. 2020, 5, 4444–4452. [Google Scholar] [CrossRef]
- Taş, N.; Ayoob, I.; Mlaiki, N. Some common fixed-point and fixed-figure results with a function family on Sb-metric spaces. AIMS Math. 2023, 8, 13050–13065. [Google Scholar] [CrossRef]
- Mani, N.; Beniwal, S.; Shukla, R.; Pingale, M. Fixed point theory in extended parametric Sb-metric spaces and its applications. Symmetry 2023, 15, 2136. [Google Scholar] [CrossRef]
- Saluja, G.S. Common fixed point theorems in S-metric spaces involving control function. Ann. Math. Comput. Sci. 2023, 18, 40–55. [Google Scholar] [CrossRef]
- Sedghi, S.; Shobkolaei, N.; Shahraki, M.; Došenović, T. Common fixed point of four maps in S-metric spaces. Math. Sci. 2018, 12, 137–143. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beniwal, S.; Mani, N.; Shukla, R.; Sharma, A. Fixed Point Results for Compatible Mappings in Extended Parametric Sb-Metric Spaces. Mathematics 2024, 12, 1460. https://doi.org/10.3390/math12101460
Beniwal S, Mani N, Shukla R, Sharma A. Fixed Point Results for Compatible Mappings in Extended Parametric Sb-Metric Spaces. Mathematics. 2024; 12(10):1460. https://doi.org/10.3390/math12101460
Chicago/Turabian StyleBeniwal, Sunil, Naveen Mani, Rahul Shukla, and Amit Sharma. 2024. "Fixed Point Results for Compatible Mappings in Extended Parametric Sb-Metric Spaces" Mathematics 12, no. 10: 1460. https://doi.org/10.3390/math12101460
APA StyleBeniwal, S., Mani, N., Shukla, R., & Sharma, A. (2024). Fixed Point Results for Compatible Mappings in Extended Parametric Sb-Metric Spaces. Mathematics, 12(10), 1460. https://doi.org/10.3390/math12101460