New Oscillation Criteria for Sturm–Liouville Dynamic Equations with Deviating Arguments
Abstract
:1. Introduction
2. Main Results
3. Discussion and Conclusions
- (1)
- The results obtained in this paper are applicable to all time scales without restrictive conditions, such as with , with , etc. (see [11]).
- (2)
- Novel and enhanced criteria have been developed for the oscillation of the solutions of Equation (1) without relying on convergence and divergence of the improper integral . Compared to previous works in the literature, this approach is more appropriate and applicable to all time scales.
- (3)
- (4)
- It would be interesting to find such conditions for the half-linear second order dynamic equations of the form
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Frassu, S.; Viglialoro, G. Boundedness in a chemotaxis system with consumed chemoattractant and produced chemorepellent. Nonlinear Anal. 2021, 213, 112505. [Google Scholar] [CrossRef]
- Li, T.; Viglialoro, G. Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime. Differ. Equ. 2021, 34, 315–336. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Li, T. Oscillatory behavior of second-order half-linear damped dynamic equations. Appl. Math. Comput. 2015, 254, 408–418. [Google Scholar] [CrossRef]
- Bohner, M.; Li, T. Kamenev-type criteria for nonlinear damped dynamic equations. Sci. China Math. 2015, 58, 1445–1452. [Google Scholar] [CrossRef]
- Li, T.; Pintus, N.; Viglialoro, G. Properties of solutions to porous medium problems with different sources and boundary conditions. Z. Angew. Math. Phys. 2019, 70, 86. [Google Scholar] [CrossRef]
- Zhang, C.; Agarwal, R.P.; Bohner, M.; Li, T. Oscillation of second-order nonlinear neutral dynamic equations with noncanonical operators. Bull. Malays. Math. Sci. Soc. 2015, 38, 761–778. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Li, T.; Zhang, C. Oscillation criteria for second-order dynamic equations on time scales. Appl. Math. Lett. 2014, 31, 34–40. [Google Scholar] [CrossRef]
- Trench, W.F. Canonical forms and principal systems for general disconjugate equations. Trans. Am. Math. Soc. 1973, 189, 319–327. [Google Scholar] [CrossRef]
- Hilger, S. Analysis on measure chains–a unified approach to continuous and discrete calculus. Results Math. 1990, 18, 18–56. [Google Scholar] [CrossRef]
- Kac, V.; Chueng, P. Quantum Calculus; Universitext; Springer: New York, NY, USA, 2002. [Google Scholar]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhäuser: Boston, MA, USA, 2001. [Google Scholar]
- Agarwal, R.P.; Bohner, M.; O’Regan, D.; Peterson, A. Dynamic equations on time scales: A survey. J. Comput. Appl. Math. 2002, 141, 1–26. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Advances in Dynamic Equations on Time Scales; Birkhäuser: Boston, MA, USA, 2003. [Google Scholar]
- Fite, W.B. Concerning the zeros of the solutions of certain differential equations. Trans. Am. Math. Soc. 1918, 19, 341–352. [Google Scholar] [CrossRef]
- Hille, E. Non-oscillation theorems. Trans. Am. Math. Soc. 1948, 64, 234–252. [Google Scholar] [CrossRef]
- Thandapani, E.; Ravi, K.; Graef, J. Oscillation and comparison theorems for half-linear second order difference equations. Comp. Math. Appl. 2001, 42, 953–960. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Saker, S.H. Oscillation of second order delay dynamic equation. Can. Appl. Math. Quart. 2005, 13, 1–17. [Google Scholar]
- Zhang, B.G.; Zhu, S. Oscillation of second-order nonlinear delay dynamic equations on time scales. Comput. Math. Appl. 2005, 49, 599–609. [Google Scholar] [CrossRef]
- Sahiner, Y. Oscillation of second-order delay dynamic equations on time scales. Nonlinear Anal. Theory Methods Appl. 2005, 63, 1073–1080. [Google Scholar] [CrossRef]
- Erbe, L.; Peterson, A.; Saker, S.H. Oscillation criteria for second-order nonlinear delay dynamic equations. J. Math. Anal. Appl. 2007, 333, 505–522. [Google Scholar] [CrossRef]
- Erbe, L.; Peterson, A.; Saker, S.H. Hille-Kneser-type criteria for second-order dynamic equations on time scales. Adv. Differ. Equ. 2006, 2006, 51401. [Google Scholar] [CrossRef]
- Erbe, L.; Hassan, T.S.; Peterson, A. Oscillation criteria for nonlinear damped dynamic equations on time scales. Appl. Math. Comput. 2008, 203, 343–357. [Google Scholar] [CrossRef]
- Agarwal, R.P.; O’Regan, D.; Saker, S.H. Philos-type oscillation criteria for second order half linear dynamic equations. Rocky Mt. J. Math. 2007, 37, 1085–1104. [Google Scholar] [CrossRef]
- Erbe, L.; Hassan, T.S.; Peterson, A.; Saker, S.H. Oscillation criteria for half-linear delay dynamic equations on time scales. Nonlinear Dyn. Syst. Theory 2009, 9, 51–68. [Google Scholar]
- Erbe, L.; Hassan, T.S.; Peterson, A.; Saker, S.H. Oscillation criteria for sublinear half-linear delay dynamic equations on time scales. Int. J. Differ. Equ. 2008, 3, 227–245. [Google Scholar]
- Karpuz, B. Hille–Nehari theorems for dynamic equations with a time scale independent critical constant. Appl. Math. Comput. 2019, 346, 336–351. [Google Scholar] [CrossRef]
- Řehák, P. A critical oscillation constant as a variable of time scales for half-linear dynamic equations. Math. Slovaca 2010, 60, 237–256. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Zhang, C.; Li, T. New Kamenev-type oscillation criteria for second-order nonlinear advanced dynamic equations. Appl. Math. Comput. 2013, 225, 822–828. [Google Scholar] [CrossRef]
- Hassan, T.S. Oscillation criteria for half-linear dynamic equations on time scales. J. Math. Anal. Appl. 2008, 345, 176–185. [Google Scholar] [CrossRef]
- Hassan, T.S. Kamenev-type oscillation criteria for second order nonlinear dynamic equations on time scales. Appl. Math. Comput. 2011, 217, 5285–5297. [Google Scholar] [CrossRef]
- Zhang, C.; Li, T. Some oscillation results for second-order nonlinear delay dynamic equations. Appl. Math. Lett. 2013, 26, 1114–1119. [Google Scholar] [CrossRef]
- Sun, S.; Han, Z.; Zhao, P.; Zhang, C. Oscillation for a class of second-order Emden-Fowler delay dynamic equations on time scales. Adv. Differ. Equ. 2010, 2010, 642356. [Google Scholar] [CrossRef]
- Grace, S.R.; Bohner, M.; Agarwal, R.P. On the oscillation of second-order half-linear dynamic equations. J. Differ. Equ. Appl. 2009, 15, 451–460. [Google Scholar] [CrossRef]
- Zhang, Q.; Gao, L.; Wang, L. Oscillation of second-order nonlinear delay dynamic equations on time scales. Comput. Math. Appl. 2011, 61, 2342–2348. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Shieh, S.L.; Yeh, C.C. Oscillation criteria for second-order retarded differential equations. Math. Comput. Model. 1997, 26, 1–11. [Google Scholar] [CrossRef]
- Yang, X. A note on oscillation and nonoscillation for second-order linear differential equation. J. Math. Anal. Appl. 1999, 238, 587–590. [Google Scholar] [CrossRef]
- Baculikova, B. Oscillation of second-order nonlinear noncanonical differential equations with deviating argument. Appl. Math. Lett. 2019, 91, 68–75. [Google Scholar] [CrossRef]
- Bazighifan, O.; El-Nabulsi, E.M. Different techniques for studying oscillatory behavior of solution of differential equations. Rocky Mt. J. Math. 2021, 51, 77–86. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Džurina, J.; Jadlovská, I. New oscillation criteria for second-order half-linear advanced differential equations. Appl. Math. Comput. 2019, 347, 404–416. [Google Scholar] [CrossRef]
- Hassan, T.S.; Bohner, M.; Florentina, I.L.; Abdel Menaem, A.; Mesmouli, M.B. New Criteria of oscillation for linear Sturm–Liouville delay noncanonical dynamic equations. Mathematics 2023, 11, 4850. [Google Scholar] [CrossRef]
- Džurina, J.; Jadlovská, I. A note on oscillation of second-order delay differential equations. Appl. Math. Lett. 2017, 69, 126–132. [Google Scholar] [CrossRef]
- Bazighifan, O.; Kumam, P. Oscillation theorems for advanced differential equations with p-Laplacian-like operators. Mathematics 2020, 8, 821. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, T.S.; Cesarano, C.; Iambor, L.F.; Abdel Menaem, A.; Iqbal, N.; Ali, A. New Oscillation Criteria for Sturm–Liouville Dynamic Equations with Deviating Arguments. Mathematics 2024, 12, 1532. https://doi.org/10.3390/math12101532
Hassan TS, Cesarano C, Iambor LF, Abdel Menaem A, Iqbal N, Ali A. New Oscillation Criteria for Sturm–Liouville Dynamic Equations with Deviating Arguments. Mathematics. 2024; 12(10):1532. https://doi.org/10.3390/math12101532
Chicago/Turabian StyleHassan, Taher S., Clemente Cesarano, Loredana Florentina Iambor, Amir Abdel Menaem, Naveed Iqbal, and Akbar Ali. 2024. "New Oscillation Criteria for Sturm–Liouville Dynamic Equations with Deviating Arguments" Mathematics 12, no. 10: 1532. https://doi.org/10.3390/math12101532
APA StyleHassan, T. S., Cesarano, C., Iambor, L. F., Abdel Menaem, A., Iqbal, N., & Ali, A. (2024). New Oscillation Criteria for Sturm–Liouville Dynamic Equations with Deviating Arguments. Mathematics, 12(10), 1532. https://doi.org/10.3390/math12101532