Improved Dual-Center Particle Swarm Optimization Algorithm
Abstract
:1. Introduction
- The velocity update formula of the PSO algorithm is deeply analyzed, and its vector decomposition yields three different flight directions which are arranged and combined to obtain six flight routes that are different from each other and eight intermediate positions;
- The optimal solution and the current solution searched by the particles are used to construct a weighted population virtual center and a weighted optimal individual virtual center. These two virtual centers are incorporated into the new way of updating the individual extremes and population extremes so that the two virtual centers follow the population to search for better positions;
- Linearly decreasing inertia weights are used to further adjust the velocity update formula;
- We determine whether the particle is caught in the local optimum and, if so, make the particle jump out of the local optimum based on the adaptive variance factor accrued from the number of iterations.
2. Particle Swarm Optimization Algorithm
3. Improvement of Dual-Center Particle Swarm Optimization Algorithm
3.1. Dual-Center Particle Swarm Optimization Algorithm
3.2. Diversified Design of Particle Motion Routes
3.3. Center Particle Design Improvement
3.4. Mutation Strategy
Algorithm 1: Mutation Operation. |
1 Input: pm, , 2 Output: 3 fordo 4 if rand<pm(i) then 5 //pm is the coefficient of mutation for each particle 6 use Equation (7) to get ; 7 end if 8 end for 9 calculate the ; 10 /; 11 if R>0.9 occurs five consecutive times then 12 ; 13 //pm is the increment of variable coefficient 14 end if 15 if five mutations were performed then 16 initialize ; 17 end if |
3.5. Optimization Process Steps
3.6. Analysis of Time Complexity
4. Simulation Experiment
Simulation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kennedy, J.; Eberhart, R. Particle swarm optimization. Int. Conf. Neural Net. 1995, 4, 1942–1948. [Google Scholar]
- Zhang, L.; Tang, Y.; Hua, C.; Guan, X. A new particle swarm optimization algorithm with adaptive inertia weight based on Bayesian techniques. Appl. Soft Comput. J. 2015, 28, 138–149. [Google Scholar] [CrossRef]
- Taherkhani, M.; Safabakhsh, R. A novel stability-based adaptive inertia weight for particle swarm optimization. Appl. Soft Comput. 2016, 38, 281–295. [Google Scholar] [CrossRef]
- Xinliang, X.; Fu, Y. Random walk autonomous groups of particles for particle swarm optimization. J. Intell. Fuzzy Syst. 2022, 42, 1519–1545. [Google Scholar]
- Kang, Y.; Zang, S. Improved particle swarm optimization algorithm based on multiple strategies. J. Northeast. Univ. Nat. Sci. Ed. 2023, 44, 1089–1097. [Google Scholar]
- Ge, H.; Sun, L.; Tan, G.; Chen, Z.; Chen, C.P. Cooperative Hierarchical PSO With Two Stage Variable Interaction Reconstruction for Large Scale Optimization. IEEE Trans. Cybern. 2017, 47, 2809–2823. [Google Scholar] [CrossRef] [PubMed]
- Gou, J.; Lei, Y.; Guo, W.; Wang, C.; Cai, Y.Q.; Luo, W. A novel improved particle swarm optimization algorithm based on individual difference evolution. Appl. Intell. 2017, 57, 468–481. [Google Scholar] [CrossRef]
- Lai, X.; Zhou, Y. An adaptive parallel particle swarm optimization for numerical optimization problems. Neural Comput. Appl. 2019, 31, 6449–6467. [Google Scholar] [CrossRef]
- Xu, G.; Cui, Q.; Shi, X.; Ge, H.; Zhan, Z.H.; Lee, H.P.; Liang, Y.; Tai, R.; Wu, C. Particle swarm optimization based on dimensional learning strategy. Swarm Evol. Comput. 2019, 45, 33–51. [Google Scholar] [CrossRef]
- Rahman, C.M. Group learning algorithm: A new metaheuristic algorithm. Neural Comput. Appl. 2023, 35, 14013–14028. [Google Scholar] [CrossRef]
- Aziz, A.A.N.; Ibrahim, Z.; Mubin, M.; Nawawi, S.W.; Mohamad, M.S. Improving Particle Swarm Optimization via Adaptive Switching Asynchronous—Synchronous Update. Appl. Soft Comput. 2018, 72, 298–311. [Google Scholar] [CrossRef]
- Jiang, L.; Ye, R.; Liang, C.; Lu, W. Improved second-order oscillating particle swarm optimization. Comput. Eng. Appl. 2019, 55, 130–138+167. [Google Scholar]
- Tang, B.; Xiang, K.; Pang, M. An integrated particle swarm optimization approach hybridizing a new self-adaptive particle swarm optimization with a modified differential evolution. Neural Comput. Appl. 2020, 32, 4849–4883. [Google Scholar] [CrossRef]
- Ding, S.; Zhang, Z.; Sun, Y.; Shi, S. Multiple birth support vector machine based on dynamic quantum particle swarm optimization algorithm. Neurocomputing 2022, 480, 146–156. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, Q.; Feng, Y.; Fu, Y. An improved particle swarm optimization algorithm combining attraction and repulsion and two-way learning. Comput. Eng. Appl. 2022, 58, 79–86. [Google Scholar]
- Chen, Y.; Li, L.; Xiao, J.; Yang, Y.; Liang, J.; Li, T. Particle swarm optimizer with crossover operation. Eng. Appl. Artif. Intell. 2018, 70, 159–169. [Google Scholar] [CrossRef]
- Tian, D.; Shi, Z. MPSO: Modified particle swarm optimization and its applications. Swarm Evol. Comput. 2018, 41, 49–68. [Google Scholar] [CrossRef]
- Ren, M.; Huang, X.; Zhu, X.; Shao, L. Optimized PSO algorithm based on the simplicial algorithm of fixed point theory. Appl. Intell. 2020, 50, 2009–2024. [Google Scholar] [CrossRef]
- Xu, F.; Zou, D.; Li, C.; Luo, H.; Zhang, M. An improved particle swarm optimization algorithm with Circle mapping and sine cosine factor. Comput. Eng. Appl. 2023, 59, 80–90. [Google Scholar]
- Predić, B.; Jovanovic, L.; Simic, V.; Bacanin, N.; Zivkovic, M.; Spalevic, P.; Budimirovic, N.; Dobrojevic, M. Cloud-load forecasting via decomposition-aided attention recurrent neural network tuned by modified particle swarm optimization. Complex Intell. Syst. 2024, 10, 2249–2269. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Salau, B.H.; Onumanyi, J.A.; Mu’azu, M.B.; Adedokun, E.A.; Salawudeen, A.T.; Adekale, A.D. A Particle Swarm and Smell Agent-Based Hybrid Algorithm for Enhanced Optimization. Algorithms 2024, 17, 53. [Google Scholar] [CrossRef]
- Kannan, S.K.; Diwekar, U. An Enhanced Particle Swarm Optimization (PSO) Algorithm Employing Quasi-Random Numbers. Algorithms 2024, 17, 195. [Google Scholar] [CrossRef]
- Feng, D.; Li, Y.; Liu, J.; Liu, Y. A particle swarm optimization algorithm based on modified crowding distance for multimodal multi-objective problems. Appl. Soft Comput. 2024, 152, 111280. [Google Scholar] [CrossRef]
- Tian, D.; Xu, Q.; Yao, X.; Zhang, G.; Li, Y.; Xu, C. Diversity-guided particle swarm optimization with multi-level learning strategy. Swarm Evol. Comput. 2024, 86, 101533. [Google Scholar] [CrossRef]
- Tang, K.; Liu, B.; Yang, J.; Sun, T. Double Center Particle Swarm Optimization. Comput. Res. Dev. 2012, 49, 1086–1094. [Google Scholar]
- Reza, M.B.; Zbigniew, M. Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review. Evol. Comput. 2017, 25, 1–54. [Google Scholar]
- Jordehi, R.A. Particle swarm optimisation for dynamic optimisation problems: A review. Neural Comput. Appl. 2014, 25, 1507–1516. [Google Scholar] [CrossRef]
- Arrison, R.K.; Engelbrecht, P.A. Ombuki-Berman, M.B. Inertia weight control strategies for particle swarm optimization:Too much momentum, not enough analysis. Swarm Intell. 2016, 10, 267–305. [Google Scholar] [CrossRef]
- Octavio, R.; Marcela, Q.; Efrén, M.; Kharel, R. Variation Operators for Grouping Genetic Algorithms: A Review. Swarm Evol. Comput. 2021, 60, 100796. [Google Scholar]
- Hassanat, A.; Almohammadi, K.; Alkafaween, E.; Abunawas, E.; Hammouri, A.; Prasath, V.S. Choosing Mutation and Crossover Ratios for Genetic Algorithms—A Review with a New Dynamic Approach. Information 2019, 10, 390. [Google Scholar] [CrossRef]
- Li, W.; Liang, P.; Sun, B.; Sun, Y.; Huang, Y. Reinforcement learning-based particle swarm optimization with neighborhood differential mutation strategy. Swarm Evol. Comput. 2023, 78, 101274. [Google Scholar] [CrossRef]
- Duan, X.; Zhang, X. A hybrid genetic-particle swarm optimizer using precise mutation strategy for computationally expensive problems. Appl. Intell. 2021, 52, 8510–8533. [Google Scholar] [CrossRef]
- Quanbin, Z.; Zhenyu, M. Adaptive differential evolution algorithm based on deeply-informed mutation strategy and restart mechanism. Eng. Appl. Artif. Intell. 2023, 126, 107001. [Google Scholar]
- Jiang, M.; Luo, Y.; Yang, S. Stochastic convergence analysis and parameter selection of the modified particle swarm optimization algorithm. Inf. Process. Lett. 2006, 102, 8–16. [Google Scholar] [CrossRef]
- Choudhary, S.; Sugumaran, S.; Belazi, A.; El-Latif, A.A.A. Linearly decreasing inertia weight PSO and improved weight factor-based clustering algorithm for wireless sensor networks. J. Ambient. Intell. Humaniz. Comput. 2021, 14, 6661–6679. [Google Scholar] [CrossRef]
- Lian, X.Q.; Liu, Y.; Chen, Y.M.; Huang, J.; Gong, Y.G.; Huo, L. Research on Multi-Peak Spectral Line Separation Method Based on Adaptive Particle Swarm Optimization. Spectrosc. Spectr. Anal. 2021, 41, 1452–1457. [Google Scholar]
- Akkar, A.H.D.; Mahdi, R.F. Evolutionary Algorithms Performance Comparison For Optimizing Unimodal And Multimodal Test Functions. Int. J. Sci. Technol. Res. 2015, 4, 38–45. [Google Scholar]
Publication | Algorithms |
---|---|
[2] | Bayesian PSO (BPSO) algorithm |
[5] | Hybrid dynamic PSO (HDPSO) algorithm |
[9] | Two-swarm learning PSO (TSLPSO) algorithm |
[11] | Switching PSO (Switch-PSO) algorithm |
[16] | PSO algorithm with crossover operation (PSOCO) |
[25] | Dual-center PSO (DCPSO) algorithm |
Route | Direction 1 | Direction 2 | Direction 3 | Mid-Position |
---|---|---|---|---|
1 | ||||
2 | ||||
3 | ||||
4 | ||||
5 | ||||
6 |
Functions | Function Expressions | Variable Range | Minimum |
---|---|---|---|
Griewank | 0 | ||
Rastrigrin | 0 | ||
Sphere | 0 | ||
Ackley | 0 | ||
Rosenbrock | 0 | ||
Alpine | 0 | ||
De Jong’s (noise) | 0 | ||
Schwefel’s 2.21 | 0 | ||
Schwefel’s 2.22 | 0 | ||
Sum of Different Power | 0 | ||
Zakharov | 0 | ||
Step | 0 |
Algorithms | Parameter Setting |
---|---|
IDCPSO | , |
DCPSO | , |
PSO | , |
LDWPSO | , |
APSO | , , |
Functions | Algorithms | Minimum | Mean | Variance |
---|---|---|---|---|
IDCPSO | 0 | |||
DCPSO | ||||
PSO | ||||
LDWPSO | ||||
APSO | ||||
IDCPSO | ||||
DCPSO | ||||
PSO | ||||
LDWPSO | ||||
APSO | ||||
IDCPSO | 0 | |||
DCPSO | ||||
PSO | ||||
LDWPSO | ||||
APSO | ||||
IDCPSO | 0 | |||
DCPSO | ||||
PSO | ||||
LDWPSO | ||||
APSO | ||||
IDCPSO | 0 | 0 | 0 | |
DCPSO | ||||
PSO | ||||
LDWPSO | ||||
APSO | ||||
IDCPSO | ||||
DCPSO | ||||
PSO | ||||
LDWPSO | ||||
APSO | ||||
IDCPSO | 0 | |||
DCPSO | ||||
PSO | ||||
LDWPSO | ||||
APSO | ||||
IDCPSO | ||||
DCPSO | ||||
PSO | ||||
LDWPSO | ||||
APSO | ||||
IDCPSO | ||||
DCPSO | ||||
PSO | ||||
LDWPSO | ||||
APSO | ||||
IDCPSO | 0 | |||
DCPSO | ||||
PSO | ||||
LDWPSO | ||||
APSO | ||||
IDCPSO | ||||
DCPSO | ||||
PSO | ||||
LDWPSO | ||||
APSO | ||||
IDCPSO | 0 | |||
DCPSO | ||||
PSO | ||||
LDWPSO | ||||
APSO |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Z.; Pan, D. Improved Dual-Center Particle Swarm Optimization Algorithm. Mathematics 2024, 12, 1698. https://doi.org/10.3390/math12111698
Qin Z, Pan D. Improved Dual-Center Particle Swarm Optimization Algorithm. Mathematics. 2024; 12(11):1698. https://doi.org/10.3390/math12111698
Chicago/Turabian StyleQin, Zhouxi, and Dazhi Pan. 2024. "Improved Dual-Center Particle Swarm Optimization Algorithm" Mathematics 12, no. 11: 1698. https://doi.org/10.3390/math12111698
APA StyleQin, Z., & Pan, D. (2024). Improved Dual-Center Particle Swarm Optimization Algorithm. Mathematics, 12(11), 1698. https://doi.org/10.3390/math12111698