Fixed Point Theory in Bicomplex Metric Spaces: A New Framework with Applications
Abstract
:1. Introduction
2. Preliminaries
- (i)
- (ii)
- (iii)
- where a is a non-negative real number;
- (iv)
- (v)
- if is a degenerated bicomplex number with
- (vi)
- if ħ is a degenerated bicomplex number.
- (i)
- and if and only if ;
- (ii)
- (iii)
- for all
- (i)
- and if and only if ;
- (ii)
- (iii)
- for all
- (i)
- A sequence is said to be a convergent sequence and converges to a point if for any there is a natural number such that for all , and we write or as
- (ii)
- A sequence is said to be a Cauchy sequence in if for any there is a natural number such that for all and
- (iii)
- If every Cauchy sequence in is convergent in , then is said to be a complete bi-CVMS.
3. Main Result
- (a)
- and
- (b)
- (c)
- (a)
- and ;
- (b)
- (c)
- (a)
- and ;
- (b)
- (c)
- (a)
- and ;
- (b)
- ;
- (c)
- (a)
- and ;
- (b)
- ;
- (c)
- (a)
- and ;
- (b)
- ;
- (c)
- (a)
- and ;
- (b)
- ;
- (c)
- (a)
- and ;
- (b)
- ;
- (c)
4. Inferred Findings
- (a)
- and ;
- (b)
- ;
- (c)
- (a)
- and
- (b)
- (c)
5. Applications
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Segre, C. Le Rappresentazioni Reali delle Forme Complesse a Gli Enti Iperalgebrici. Math. Ann. 1892, 40, 413–467. [Google Scholar] [CrossRef]
- Price, G.B. An Introduction to Multicomplex Spaces and Functions; Marcel Dekker: New York, NY, USA, 1991. [Google Scholar]
- Waugh, M.A. Introduction to Bicomplex Numbers; University of Delhi: New Delhi, India, 2018. [Google Scholar]
- Azam, A.; Fisher, B.; Khan, M. Common fixed point theorems in complex valued metric spaces. Num. Funct. Anal. Optim. 2011, 32, 243–253. [Google Scholar] [CrossRef]
- Choi, J.; Datta, S.K.; Biswas, T.; Islam, N. Some fixed point theorems in connection with two weakly compatible mappings in bicomplex valued metric spaces. Honam. Math. J. 2017, 39, 115–126. [Google Scholar] [CrossRef]
- Jebril, I.H.; Datta, S.K.; Sarkar, R.; Biswas, N. Common fixed point theorems under rational contractions for a pair of mappings in bicomplex valued metric spaces. J. Interdiscip. Math. 2020, 22, 1071–1082. [Google Scholar] [CrossRef]
- Beg, I.; Datta, S.K.; Pal, D. Fixed point in bicomplex valued metric spaces. Int. J. Nonlinear Anal. Appl. 2021, 12, 717–727. [Google Scholar]
- Gnanaprakasam, A.J.; Boulaaras, S.M.; Mani, G.; Cherif, B.; Idris, S.A. Solving system of linear equations via bicomplex valued metric space. Demonstr. Math. 2021, 54, 474–487. [Google Scholar] [CrossRef]
- Abdou, A.A.N. Solving the Fredholm integral equation by common fixed point results in bicomplex valued metric spaces. Mathematics 2023, 11, 3249. [Google Scholar] [CrossRef]
- Gu, Z.; Mani, G.; Gnanaprakasam, A.J.; Li, Y. Solving a system of nonlinear integral equations via common fixed point theorems on bicomplex partial metric space. Mathematics 2021, 9, 1584. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Ahmad, J.; Al-Mazrooei, A.E.; Lateef, D.; Lakhani, F. On common fixed point results in bicomplex valued metric spaces with application. AIMS Math. 2023, 8, 5522–5539. [Google Scholar] [CrossRef]
- Albargi, A.H.; Shammaky, A.E.; Ahmad, J. Common fixed point results in bicomplex valued metric spaces with application. Mathematics 2023, 11, 1207. [Google Scholar] [CrossRef]
- Abdou, A.A.N. Common fixed point theorems for multi-valued mappings in bicomplex valued metric spaces with application. AIMS Math. 2023, 8, 20154–20168. [Google Scholar] [CrossRef]
- Mani, G.; Haque, S.; Gnanaprakasam, A.J.; Ege, O.; Mlaiki, N. The study of bicomplex-valued controlled metric spaces with applications to fractional differential equations. Mathematics 2023, 11, 2742. [Google Scholar] [CrossRef]
- Gurusamy, S. Bicomplex valued bipolar metric spaces and fixed point theorems. Math. Anal. Its Contemp. Appl. 2022, 4, 29–43. [Google Scholar]
- Ramaswamy, R.; Mani, G.; Gnanaprakasam, A.J.; Gnanaprakasam, A.J.; Abdelnaby, O.A.A.; Radenović, S. An application to fixed-point results in tricomplex-valued metric spaces using control functions. Mathematics 2022, 10, 3344. [Google Scholar] [CrossRef]
- Abdullahi, M.S.; Azam, A. Multivalued fixed points results via rational type contractive conditions in complex valued metric spaces. J. Int. Math. Virtual Inst. 2017, 7, 119–146. [Google Scholar]
- Arshad, M.; Fahimuddin; Shoaib, A.; Hussain, A. Fixed point results for α-ψ-locally graphic contraction in dislocated qusai metric spaces. Math. Sci. 2014, 8, 79–85. [Google Scholar]
- Azam, A.; Ahmad, J.; Kumam, P. Common fixed point theorems for multi-valued mappings in complex-valued metric spaces. J. Inequal. Appl. 2013, 2013, 578. [Google Scholar] [CrossRef]
- Mukheimer, A.A. Some Common fixed point theorems in complex valued b-metric spaces. Sci. World J. 2014, 2014, 587825. [Google Scholar] [CrossRef]
- Ullah, N.; Shagari, M.S.; Azam, A. Fixed point theorems in complex valued extended b-metric spaces. Moroc. J. Pure Appl. Anal. 2019, 5, 140–163. [Google Scholar] [CrossRef]
- Carmel Pushpa Raj, J.; Arul Xavier, A.; Maria Joseph, J.; Marudai, M. Common fixed point theorems under rational contractions in complex valued extended b-metric spaces. Int. J. Nonlinear Anal. Appl. 2022, 13, 3479–3490. [Google Scholar]
- Özgür, N.Y.; Tas, N. Some fixed-circle theorems on metric spaces. Bull. Malays. Math. Sci. Soc. 2019, 42, 1433–1449. [Google Scholar] [CrossRef]
- Özgür, N.Y.; Tas, N.; Çelik, U. New fixed-circle results on S-metric spaces. Bull. Math. Anal. Appl. 2017, 9, 10–23. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alamri, B. Fixed Point Theory in Bicomplex Metric Spaces: A New Framework with Applications. Mathematics 2024, 12, 1770. https://doi.org/10.3390/math12111770
Alamri B. Fixed Point Theory in Bicomplex Metric Spaces: A New Framework with Applications. Mathematics. 2024; 12(11):1770. https://doi.org/10.3390/math12111770
Chicago/Turabian StyleAlamri, Badriah. 2024. "Fixed Point Theory in Bicomplex Metric Spaces: A New Framework with Applications" Mathematics 12, no. 11: 1770. https://doi.org/10.3390/math12111770
APA StyleAlamri, B. (2024). Fixed Point Theory in Bicomplex Metric Spaces: A New Framework with Applications. Mathematics, 12(11), 1770. https://doi.org/10.3390/math12111770