Torricelli’s Law in Fractal Space–Time Continuum
Abstract
:1. Introduction
2. Generalization of Torricelli’s Law from Conventional to Fractal Calculus
2.1. Definition of Fractal Continuum Derivatives
- i
- The fractional norm is defined as , where and the mapping of the fractional coordinates in the fractal continuum from the Cartesian coordinates in the embedding Euclidean space is given by
- ii
- The distance between two points is defined by , with .
- iii
- The gradient operator is expressed as , where are basis vectors, and
- iv
- Meanwhile, the divergence operator is given by .
- v
- So, the Laplacian is .
- vi
- The time fractal continuum derivative is defined by
2.2. Fractal Continuum Torricelli’s Law
3. Theoretical Implementation of Fractal Formulation
3.1. Fractal Reservoirs
3.2. The Properties and Characteristics of the Studied Reservoirs
3.3. Implementation
4. Analysis and Discussion of Results
4.1. Numerical Evaluation of Fractal Formulations
4.2. The Physical Motivations of the Fractal Continuum Approach
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Golmankhaneh, A. Fractal Calculus and Its Applications; World Scientific: Singapore, 2022. [Google Scholar]
- Singh, J.; Kumar, D.; Kumar, S. An efficient computational method for local fractional transport equation occurring in fractal porous media. Comp. Appl. Math. 2020, 39, 137. [Google Scholar] [CrossRef]
- Fuentes, C.; Alcántara-López, F.; Quevedo, A.; Chávez, C. Fractional Vertical Infiltration. Mathematics 2021, 9, 383. [Google Scholar] [CrossRef]
- Su, N. Fractional Calculus for Hydrology, Soil Science and Geomechanics: An Introduction to Applications; Taylor and Francis Group, LLC: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2022. [Google Scholar]
- Damian-Adame, L.; Gutiérrez-Torres, C.; Figueroa-Espinoza, B.; Barbosa-Saldaña, J.; Jiménez-Bernal, J. A Mechanical Picture of Fractal Darcy’s Law. Fractal Fract. 2023, 7, 639. [Google Scholar] [CrossRef]
- Di-Paola, M.; Heuer, R.; Pirrota, A. Fractional visco-elastic Euler–Bernoulli beam. Int. J. Solids Struct. 2013, 50, 3505–3510. [Google Scholar] [CrossRef]
- Cai, W.; Chen, W.; Xu, W. Characterizing the creep of viscoelastic materials by fractal derivative models. Int. J. Non-Linear Mech. 2016, 87, 58–63. [Google Scholar] [CrossRef]
- Samayoa, D.; Damián, L.; Kryvko, A. Map of bending problem for self-similar beams into fractal continuum using Euler-Bernoulli principle. Fractal Fract. 2022, 6, 230. [Google Scholar] [CrossRef]
- Kumar, S.; Chauhan, R.; Momani, S.; Hadid, S. A study of a modified nonlinear dynamical system with fractal-fractional derivative. Int. J. Numer. Methods Heat Fluid Flow 2022, 32, 2620–2639. [Google Scholar] [CrossRef]
- El-Nabulsi, R.; Anukool, W. Fractal dimension modeling of seismology and earthquakes dynamics. Acta Mech. 2022, 233, 2107–2122. [Google Scholar] [CrossRef]
- Balankin, A.S.; Baltasar, M.; Martínez-González, C.L.; Morales, D. Random walk in chemical space of Cantor dust as a paradigm of superdiffusion. Phys. Rev. E 2012, 86, 052101. [Google Scholar] [CrossRef]
- Golmankhaneh, A.K.; Ochoa-Ontiveros, L. Fractal calculus approach to diffusion on fractal combs. Chaos Solitons Fractals 2023, 175, 114021. [Google Scholar] [CrossRef]
- Zhukov, D.; Otradnov, K.; Kalinin, V. Fractional-Differential Models of the Time Series Evolution of Socio-Dynamic Processes with Possible Self-Organization and Memory. Mathematics 2024, 12, 484. [Google Scholar] [CrossRef]
- Golmankhaneh-Amirreza, K.; Tunc, S.; Schlichtinger, A.M.; Asanza, D.M.; Golmankhaneh, A.K. Modeling tumor growth using fractal calculus: Insights into tumor dynamics. Biosystems 2024, 235, 105071. [Google Scholar] [CrossRef]
- Wang, S.; Hong, L.; Jiang, J.; Li, X. Synchronization precision analysis of a fractional-order hyperchaos with application to image encryption. AIP Adv. 2020, 10, 105316. [Google Scholar] [CrossRef]
- Dubey, V.; Kumar, D.; Alshehri, A.; Dubey, S.; Singh, J. Computational Analysis of Local Fractional LWR Model Occurring in a Fractal Vehicular Traffic Flow. Fractal Fract. 2022, 6, 426. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, Y.; Sun, H. Modeling COVID-19 spreading dynamics and unemployment rate evolution in rural and urban counties of Alabama and New York using fractional derivative models. Results Phys. 2021, 26, 104360. [Google Scholar] [CrossRef]
- Shikongo, A. 11 A COVID-19-related Atangana-Baleanu Fractional Model for Unemployed Youths. In Mathematical and Computational Modelling of COVID-19 Transmission; River Publishers: New York, NY, USA, 2023; pp. 215–240. [Google Scholar]
- Dubey, V.; Kumar, D.; Singh, J.; Alshehri, A.; Dubey, S. Analysis of local fractional Klein-Gordon equations arising in relativistic fractal quantum mechanics. Waves Random Complex Media 2022, 1–21. [Google Scholar] [CrossRef]
- Dubey, S.; Chakraverty, S. Hybrid techniques for approximate analytical solution of space- and time-fractional telegraph equations. Pramana J. Phys. 2023, 97, 11. [Google Scholar] [CrossRef]
- Al-Raeei, M. Applying fractional quantum mechanics to systems with electrical screening effects. Chaos Solitons Fractals 2021, 150, 111209. [Google Scholar] [CrossRef]
- Dubey, V.; Singh, J.; Alshehri, A.; Dubey, S.; Kumar, D. Analysis and Fractal Dynamics of Local Fractional Partial Differential Equations Occurring in Physical Science. J. Comput. Nonlienar Dyn. 2023, 18, 031001. [Google Scholar] [CrossRef]
- Falconer, K. Fractal Geometry: Mathematical Foundations and Applications; John Wiley and Sons, Ltd.: Chichester, UK, 2014. [Google Scholar]
- Carpinteri, A.; Chiai, B.; Cornetti, P. A fractal theory for the mechanics of elastic materials. Chaos Soliton Fractals 2004, 365, 235–240. [Google Scholar] [CrossRef]
- Lacan, F.; Tresser, C. Fractals as objects with nontrivial structures at all scales. Chaos Soliton Fractals 2015, 75, 218–242. [Google Scholar] [CrossRef]
- Parvate, A.; Satin, S.; Gangal, A.D. Calculus on fractal curves in Rn. Fractals 2011, 19, 15–27. [Google Scholar] [CrossRef]
- Chen, W. Time-space fabric underlying anomalous diffusion. Chaos Soliton Fractals 2006, 28, 923–929. [Google Scholar] [CrossRef]
- Tarasov, V.E. General Fractional Vector Calculus. Mathematics 2021, 9, 2816. [Google Scholar] [CrossRef]
- Li, J.; Ostoja-Starzewski, M. Micropolar mechanics of product fractal media. Proc. R. Soc. A 2022, 478, 20210770. [Google Scholar] [CrossRef]
- Balankin, A.; Baltasar, M. Vector differential operators in a fractional dimensional space, on fractals, and in fractal continua. Chaos Solitons Fractals 2023, 168, 113203. [Google Scholar] [CrossRef]
- Malcherek, A. History of the Torricelli principle and a new outflow theory. J. Hydraul. Eng. 2016, 142, 02516004. [Google Scholar] [CrossRef]
- Balankin, A.S.; Elizarraraz, B.E. Hydrodynamics of fractal continuum flow. Phys. Rev. E 2012, 85, 025302(R). [Google Scholar] [CrossRef]
- Balankin, A.S.; Elizarraraz, B.E. Map of fluid flow in fractal porous medium into fractal continuum flow. Phys. Rev. E 2012, 85, 056314. [Google Scholar] [CrossRef]
- Balankin, A.; Patino, J.; Patino, M. Inherent features of fractal sets and key attributes of fractal models. Fractals 2022, 30, 2250082. [Google Scholar] [CrossRef]
- Balankin, A.S. Fractional space approach to studies of physical phenomena on fractals and in confined low-dimensional systems. Chaos Solitons Fractals 2020, 132, 109572. [Google Scholar] [CrossRef]
- Havlin, S. Diffusion and Reactions in Fractals and Disordered Systems; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Clanet, C. Clepsydrae, from Galilei to Torricelli. Phys. Fluids 2000, 12, 2743–2751. [Google Scholar] [CrossRef]
- Zheng, B.; Qi, S.; Guo, S.; Liang, N.; Luo, G.; Zhang, X.; Lu, W.; Jin, C.; Li, Y.; Yu, X.; et al. Experimental Study of Direct Shear Properties of Anisotropic Reservoir Shale. Energies 2024, 17, 1997. [Google Scholar] [CrossRef]
- Zou, S.; Xu, P.; Xie, C.; Deng, X.; Tang, H. Characterization of Two-Phase Flow from Pore-Scale Imaging Using Fractal Geometry under Water-Wet and Mixed-Wet Conditions. Energies 2022, 15, 2036. [Google Scholar] [CrossRef]
- Maramathas, A.; Boudouvis, A. A “fractal” modification of Torricelli’s formula. Hydrogeol. J. 2009, 18, 311–316. [Google Scholar] [CrossRef]
- Balankin, A.S.; Matías-Gutierres, S.; Samayoa, D.; Patiño Ortiz, J.; Espinoza-Elizarraraz, B.; Martínez-González, C. Slow kinetics of water escape from randomly folded foils. Phys. Rev. E 2011, 83, 036310. [Google Scholar] [CrossRef]
- Balankin, A.; Morales-Ruiz, L.; Matías-Gutierres, S.; Susarrey-Huerta, O.; Samayoa, D.; Patiño Ortiz, J. Comparative study of gravity-driven discharge from reservoirs with translationally invariant and fractal pore networks. J. Hydrol. 2018, 565, 467–473. [Google Scholar] [CrossRef]
- Balankin, A.; Valdivia, J.; Marquez, J.; Susarrey, O.; Solorio-Avila, M. Anomalous diffusion of fluid momentum and Darcy-like law for laminar flow in media with fractal porosity. Phys. Lett. A 2016, 380, 2767–2773. [Google Scholar] [CrossRef]
- Alcántara-López, F.; Camacho-Velázquez, R.; Brambila-Paz, F.; Chávez, C. Spatial fractional Darcy’s law on the diffusion equation with a fractional time derivative in single-porosity naturally fractured reservoirs. Energies 2022, 15, 4837. [Google Scholar] [CrossRef]
- Dorhjie, D.; Yusupov, R.; Krutko, V. Deviation from Darcy Law in Porous Media Due to Reverse Osmosis: Pore-Scale Approach. Energies 2022, 15, 6656. [Google Scholar] [CrossRef]
- Samayoa, D.; Alcántara, A.; Mollinedo, H.; Barrera-Lao, F.; Torres-SanMiguel, C. Fractal Continuum Mapping Applied to Timoshenko Beams. Mathematics 2023, 11, 3492. [Google Scholar] [CrossRef]
- Korvin, G. Menger Sponge Models. In Statistical Rock Physics; Springer Nature Switzerland: Cham, Switzerland, 2024; pp. 179–206. [Google Scholar] [CrossRef]
- Cristea, L.L.; Steinsky, B. Connected generalised Sierpinski carpets. Topol. Its Appl. 2010, 157, 1157–1162. [Google Scholar] [CrossRef]
- Balankin, A.S.; Mena, B.; Martínez, M. Hausdorff dimension and geodesic metric of critical percolation cluster in two dimensions. Phys. Lett. A 2017, 381, 2665–2672. [Google Scholar] [CrossRef]
- Balankin, A.S. Effective degrees of freedom of a random walk on a fractal. Phys. Rev. E 2015, 92, 062146. [Google Scholar] [CrossRef]
- Balankin, A.; Ramirez-Joachim, J.; Gonzalez-Lopez, G.; Gutierrez-Hernandez, S. Formation factors for a class of deterministic models of pre-fractal pore-fracture networks. Chaos Soliton Fractals 2022, 162, 112452. [Google Scholar] [CrossRef]
- Patino-Ortiz, J.; Patino-Ortiz, M.; Martínez-Cruz, M.A.; Balankin, A. A Brief Survey of Paradigmatic Fractals from a Topological Perspective. Fractal Fract. 2023, 7, 597. [Google Scholar] [CrossRef]
- Wang, F.; Jiao, L.; Liu, Z.; Tan, X.; Wang, C.; Gao, J. Fractal analysis of pore structure in low permeability sandstones using mercury intrusion porosimetry. J. Porous Media 2018, 21, 1097–1119. [Google Scholar] [CrossRef]
- Zeng, Q.; Chen, S.; Yang, P.; Peng, Y.; Wang, J.; Zhou, C.; Wang, Z.; Yan, D. Reassessment of mercury intrusion porosimetry for characterizing the pore structure of cement-based porous materials by monitoring the mercury entrapments with X-ray computed tomography. Cem. Concr. Compos. 2020, 113, 103726. [Google Scholar] [CrossRef]
- Park, Y.; Kim, S.; Ahn, S.e.a. Magnetic resonance imaging–based 3-dimensional fractal dimension and lacunarity analyses may predict the meningioma grade. Eur. Radiol. 2020, 30, 465–4622. [Google Scholar] [CrossRef]
- Boming, Y.; Li, J. Some fractal character of porous media. Fractals 2001, 9, 365–372. [Google Scholar] [CrossRef]
- Boming, Y. Fractal Character for Tortuous Streamtubes in Porous Media. Chin. Phys. Lett. 2005, 22, 158. [Google Scholar] [CrossRef]
Reservoir | L (m) | ℓ (m) | ||||||
---|---|---|---|---|---|---|---|---|
Sierpinski cube | 0.97 | 0.27 | 0.03 | |||||
Menger sponge | 0.27 | 0.03 | ||||||
Cantor dust 1 | 3 | 3 | 0.27 | 0.03 | ||||
Cantor dust 2 | 3 | 3 | 0.27 | 0.03 | ||||
Euclidean | 3 | 3 | 3 | 2 | 1 | 1 | 0.27 | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samayoa, D.; Alvarez-Romero, L.; Jiménez-Bernal, J.A.; Damián Adame, L.; Kryvko, A.; Gutiérrez-Torres, C.d.C. Torricelli’s Law in Fractal Space–Time Continuum. Mathematics 2024, 12, 2044. https://doi.org/10.3390/math12132044
Samayoa D, Alvarez-Romero L, Jiménez-Bernal JA, Damián Adame L, Kryvko A, Gutiérrez-Torres CdC. Torricelli’s Law in Fractal Space–Time Continuum. Mathematics. 2024; 12(13):2044. https://doi.org/10.3390/math12132044
Chicago/Turabian StyleSamayoa, Didier, Liliana Alvarez-Romero, José Alfredo Jiménez-Bernal, Lucero Damián Adame, Andriy Kryvko, and Claudia del C. Gutiérrez-Torres. 2024. "Torricelli’s Law in Fractal Space–Time Continuum" Mathematics 12, no. 13: 2044. https://doi.org/10.3390/math12132044
APA StyleSamayoa, D., Alvarez-Romero, L., Jiménez-Bernal, J. A., Damián Adame, L., Kryvko, A., & Gutiérrez-Torres, C. d. C. (2024). Torricelli’s Law in Fractal Space–Time Continuum. Mathematics, 12(13), 2044. https://doi.org/10.3390/math12132044