Improving Graph Collaborative Filtering from the Perspective of User–Item Interaction Directly Using Contrastive Learning
Abstract
:1. Introduction
- We propose selecting positive and negative examples from the perspective of user–item interaction, which can enable contrastive learning to effectively achieve the goal of collaborative filtering.
- We propose the objective function DCL loss, which significantly improves both the performance and training efficiency of the graph collaborative filtering models.
- We conduct extensive experiments on four benchmark datasets to demonstrate the superiority of DCL loss.
2. Related Work
2.1. Collaborative Filtering
2.2. Graph Contrastive Learning
3. Preliminary Examination
3.1. Graph Collaborative Filtering
3.2. Graph Contrastive Learning
3.3. Further Analysis
4. Methodology
4.1. Encoder
4.2. DCL_N Loss
4.3. DCL Loss
5. Experiment
5.1. Datasets
5.2. Baseline
- -
- BPRMF [14] proposes pair-wise BPR loss for personalized ranking.
- -
- FISM [44] constitutes an item-oriented collaborative filtering model, wherein it consolidates the representations of a user’s historical interactions to embody their interests.
- -
- NGCF [8] preprocesses data into a bipartite graph structure and applies graph neural networks to collaborative filtering, thus capturing high-order information.
- -
- MultiGCCF [45] extends information propagation beyond the user–item bipartite graph, encompassing higher-order correlations among both users and items.
- -
- DGCF [24] decomposes user interests and uses graph neural networks on the subgraphs to obtain user sub-embeddings, which are concatenated to obtain the final user embedding.
- -
- LightGCN [10] removes feature transformation and nonlinear activation in graph neural networks, simplifying the graph neural networks while improving recommendation performance.
- -
- SGL [13] introduces contrastive learning into graph neural networks through graph augmentation techniques, further improving recommendation performance. We use SGL-ED as the comparative scheme.
- -
- NCL [34] employs structural neighbors and semantic neighbors, which are obtained by using a clustering algorithm for contrastive learning.
- -
- SimGCL [35] uses the noise perturbation technique to generate different views of contrastive learning, which not only improves performance recommendation but also increases training efficiency.
- -
- XSimGCL [12] adopts the noise perturbation technique for contrastive learning between cross-layers, further improving training efficiency.
5.3. Evaluation Metrics
5.4. Implementation Details
5.5. Experiment
5.5.1. Overall Performance
5.5.2. The Recommendation Performance of Other Models Using DCL Loss as the Objective Function
5.5.3. Efficiency Comparison
- The total training time required for a model to achieve the best performance.
5.5.4. Ablation Experiment
5.5.5. The Impact of the Number n of Negative Examples
5.5.6. The Impact of Temperature Coefficient
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, S.; Sun, F.; Zhang, W.; Xie, X.; Cui, B. Graph Neural Networks in Recommender Systems: A Survey. ACM Comput. Surv. 2022, 55, 1–37. [Google Scholar] [CrossRef]
- Covington, P.; Adams, J.; Sargin, E. Deep Neural Networks for YouTube Recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems, Boston, MA, USA, 15–19 September 2016; pp. 191–198. [Google Scholar] [CrossRef]
- Ying, R.; He, R.; Chen, K.; Eksombatchai, P.; Hamilton, W.L.; Leskovec, J. Graph Convolutional Neural Networks for Web-Scale Recommender Systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 974–983. [Google Scholar] [CrossRef]
- Yuan, F.; He, X.; Karatzoglou, A.; Zhang, L. Parameter-Efficient Transfer from Sequential Behaviors for User Modeling and Recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, 25–30 July 2020; pp. 1469–1478. [Google Scholar] [CrossRef]
- Ebesu, T.; Shen, B.; Fang, Y. Collaborative Memory Network for Recommendation Systems. In Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor, MI, USA, 8–12 July 2018; pp. 515–524. [Google Scholar] [CrossRef]
- He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; Chua, T.S. Neural Collaborative Filtering. In Proceedings of the 26th International Conference on World Wide Web, Perth, Australia, 3–7 April 2017; pp. 173–182. [Google Scholar] [CrossRef]
- Liang, D.; Krishnan, R.G.; Hoffman, M.D.; Jebara, T. Variational Autoencoders for Collaborative Filtering. In Proceedings of the 2018 World Wide Web Conference, Lyon, France, 23–27 April 2018; pp. 689–698. [Google Scholar] [CrossRef]
- Wang, X.; He, X.; Wang, M.; Feng, F.; Chua, T.S. Neural Graph Collaborative Filtering. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, France, 21–25 July 2019; pp. 165–174. [Google Scholar] [CrossRef]
- Wu, L.; He, X.; Wang, X.; Zhang, K.; Wang, M. A Survey on Accuracy-Oriented Neural Recommendation: From Collaborative Filtering to Information-Rich Recommendation. IEEE Trans. Knowl. Data Eng. 2023, 35, 4425–4445. [Google Scholar] [CrossRef]
- He, X.; Deng, K.; Wang, X.; Li, Y.; Zhang, Y.; Wang, M. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, 25–30 July 2020; pp. 639–648. [Google Scholar] [CrossRef]
- Zhang, J. Graph Neural Networks for Small Graph and Giant Network Representation Learning: An Overview. arXiv 2019, arXiv:1908.00187. [Google Scholar]
- Yu, J.; Xia, X.; Chen, T.; Cui, L.; Hung, N.Q.V.; Yin, H. XSimGCL: Towards Extremely Simple Graph Contrastive Learning for Recommendation. IEEE Trans. Knowl. Data Eng. 2023, 36, 913–926. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Feng, F.; He, X.; Chen, L.; Lian, J.; Xie, X. Self-supervised Graph Learning for Recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, 11–15 July 2021; pp. 726–735. [Google Scholar] [CrossRef]
- Rendle, S.; Freudenthaler, C.; Gantner, Z.; Schmidt-Thieme, L. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, Montreal, QC, Canada, 18–21 June 2009; pp. 452–461. [Google Scholar]
- van den Oord, A.; Li, Y.; Vinyals, O. Representation Learning with Contrastive Predictive Coding. arXiv 2019, arXiv:1807.03748. [Google Scholar]
- Gao, C.; Wang, X.; He, X.; Li, Y. Graph Neural Networks for Recommender System. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, Virtual Event, 21–25 February 2022; pp. 1623–1625. [Google Scholar] [CrossRef]
- Cai, X.; Huang, C.; Xia, L.; Ren, X. LightGCL: Simple Yet Effective Graph Contrastive Learning for Recommendation. arXiv 2023, arXiv:2302.08191. [Google Scholar]
- Koren, Y.; Bell, R.; Volinsky, C. Matrix Factorization Techniques for Recommender Systems. Computer 2009, 42, 30–37. [Google Scholar] [CrossRef]
- He, X.; Du, X.; Wang, X.; Tian, F.; Tang, J.; Chua, T.S. Outer product-based neural collaborative filtering. In Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 2227–2233. [Google Scholar]
- Xue, H.J.; Dai, X.Y.; Zhang, J.; Huang, S.; Chen, J. Deep matrix factorization models for recommender systems. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; pp. 3203–3209. [Google Scholar]
- Chen, C.; Zhang, M.; Zhang, Y.; Liu, Y.; Ma, S. Efficient Neural Matrix Factorization without Sampling for Recommendation. ACM Trans. Inf. Syst. 2020, 38, 1–28. [Google Scholar] [CrossRef]
- Su, C.; Chen, M.; Xie, X. Graph Convolutional Matrix Completion via Relation Reconstruction. In Proceedings of the 2021 10th International Conference on Software and Computer Applications, Kuala Lumpur, Malaysia, 23–26 February 2021; pp. 51–56. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, Y.; Ma, C.; Coates, M.; Guo, H.; Tang, R.; He, X. Multi-graph Convolution Collaborative Filtering. In Proceedings of the 2019 IEEE International Conference on Data Mining (ICDM), Beijing, China, 8–11 November 2019; pp. 1306–1311. [Google Scholar] [CrossRef]
- Wang, X.; Jin, H.; Zhang, A.; He, X.; Xu, T.; Chua, T.S. Disentangled Graph Collaborative Filtering. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, 25–30 July 2020; pp. 1001–1010. [Google Scholar] [CrossRef]
- Ji, S.; Feng, Y.; Ji, R.; Zhao, X.; Tang, W.; Gao, Y. Dual Channel Hypergraph Collaborative Filtering. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event, 6–10 July 2020; pp. 2020–2029. [Google Scholar] [CrossRef]
- Sun, J.; Cheng, Z.; Zuberi, S.; Perez, F.; Volkovs, M. HGCF: Hyperbolic Graph Convolution Networks for Collaborative Filtering. In Proceedings of the Web Conference, Ljubljana, Slovenia, 19–23 April 2021; pp. 593–601. [Google Scholar] [CrossRef]
- Yang, M.; Li, Z.; Zhou, M.; Liu, J.; King, I. HICF: Hyperbolic Informative Collaborative Filtering. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 14–18 August 2022; pp. 2212–2221. [Google Scholar] [CrossRef]
- Mao, K.; Zhu, J.; Xiao, X.; Lu, B.; Wang, Z.; He, X. UltraGCN: Ultra Simplification of Graph Convolutional Networks for Recommendation. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Virtual Event, 1–5 November 2021; pp. 1253–1262. [Google Scholar] [CrossRef]
- Wang, C.; Yu, Y.; Ma, W.; Zhang, M.; Chen, C.; Liu, Y.; Ma, S. Towards Representation Alignment and Uniformity in Collaborative Filtering. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 14–18 August 2022; pp. 1816–1825. [Google Scholar] [CrossRef]
- He, K.; Fan, H.; Wu, Y.; Xie, S.; Girshick, R. Momentum Contrast for Unsupervised Visual Representation Learning. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 9726–9735. [Google Scholar] [CrossRef]
- Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A simple framework for contrastive learning of visual representations. In Proceedings of the 37th International Conference on Machine Learning, Virtual Event, 13–18 July 2020; Available online: https://dl.acm.org/doi/proceedings/10.5555/3524938 (accessed on 12 January 2024).
- Yan, Y.; Li, R.; Wang, S.; Zhang, F.; Wu, W.; Xu, W. ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer. arXiv 2021, arXiv:2105.11741. [Google Scholar]
- Gao, T.; Yao, X.; Chen, D. SimCSE: Simple Contrastive Learning of Sentence Embeddings. arXiv 2022, arXiv:2104.08821. [Google Scholar]
- Lin, Z.; Tian, C.; Hou, Y.; Zhao, W.X. Improving Graph Collaborative Filtering with Neighborhood-enriched Contrastive Learning. In Proceedings of the ACM Web Conference 2022, Lyon, France, 25–29 April 2022; pp. 2320–2329. [Google Scholar] [CrossRef]
- Yu, J.; Yin, H.; Xia, X.; Chen, T.; Cui, L.; Nguyen, Q.V.H. Are Graph Augmentations Necessary? Simple Graph Contrastive Learning for Recommendation. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain, 11–15 July 2022; pp. 1294–1303. [Google Scholar] [CrossRef]
- Xia, L.; Huang, C.; Xu, Y.; Zhao, J.; Yin, D.; Huang, J. Hypergraph Contrastive Collaborative Filtering. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain, 11–15 July 2022; pp. 70–79. [Google Scholar] [CrossRef]
- Ren, X.; Xia, L.; Zhao, J.; Yin, D.; Huang, C. Disentangled Contrastive Collaborative Filtering. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, Taipei, Taiwan, 23–27 July 2023; pp. 1137–1146. [Google Scholar] [CrossRef]
- Huang, C.; Xia, L.; Wang, X.; He, X.; Yin, D. Self-Supervised Learning for Recommendation. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management, Atlanta, GA, USA, 17–21 October 2022; pp. 5136–5139. [Google Scholar] [CrossRef]
- Xia, L.; Huang, C.; Shi, J.; Xu, Y. Graph-less Collaborative Filtering. In Proceedings of the ACM Web Conference 2023, Austin, TX, USA, 30 April–4 May 2023; pp. 17–27. [Google Scholar] [CrossRef]
- Zhong, H.; Wu, J.; Chen, C.; Huang, J.; Deng, M.; Nie, L.; Lin, Z.; Hua, X.S. Graph Contrastive Clustering. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 9204–9213. [Google Scholar] [CrossRef]
- McAuley, J.; Targett, C.; Shi, Q.; van den Hengel, A. Image-Based Recommendations on Styles and Substitutes. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Chile, 9–13 August 2015; pp. 43–52. [Google Scholar] [CrossRef]
- Cho, E.; Myers, S.A.; Leskovec, J. Friendship and mobility: User movement in location-based social networks. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 21–24 August 2011; pp. 1082–1090. [Google Scholar] [CrossRef]
- Chen, W.; Huang, P.; Xu, J.; Guo, X.; Guo, C.; Sun, F.; Li, C.; Pfadler, A.; Zhao, H.; Zhao, B. POG: Personalized Outfit Generation for Fashion Recommendation at Alibaba iFashion. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 2662–2670. [Google Scholar] [CrossRef]
- Kabbur, S.; Ning, X.; Karypis, G. FISM: Factored item similarity models for top-N recommender systems. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, 11–14 August 2013; KDD ’13. pp. 659–667. [Google Scholar] [CrossRef]
- Zhao, W.X.; Chen, J.; Wang, P.; Gu, Q.; Wen, J.R. Revisiting Alternative Experimental Settings for Evaluating Top-N Item Recommendation Algorithms. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Virtual Event, 19–23 October 2020; pp. 2329–2332. [Google Scholar] [CrossRef]
- Zhao, W.X.; Mu, S.; Hou, Y.; Lin, Z.; Chen, Y.; Pan, X.; Li, K.; Lu, Y.; Wang, H.; Tian, C.; et al. RecBole: Towards a Unified, Comprehensive and Efficient Framework for Recommendation Algorithms. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Virtual Event, 1–5 November 2021; pp. 4653–4664. [Google Scholar] [CrossRef]
Dataset | Metric | LightGCN | XSimGCL | LDCL_N |
---|---|---|---|---|
Recall@10 | 0.1362 | 0.1504 | 0.124 | |
NDCG@10 | 0.0876 | 0.1102 | 0.0894 | |
Gowalla | #Epoch | 585 | 53 | 2 |
Time/Epoch | 5.55 s | 7.64 s | 10.24 s | |
Total Time | 54 min 6.75 s | 6 min 44.91 s | 0 min 20.48 s | |
Recall@10 | 0.0730 | 0.0926 | 0.0734 | |
NDCG@10 | 0.0520 | 0.0681 | 0.0526 | |
Yelp | #Epoch | 753 | 49 | 5 |
Time/Epoch | 14.55 s | 16.30 s | 12.52 s | |
Total Time | 182 min 36.14 s | 13 min 18.70 s | 1 min 1.4 s |
Datasets | #Users | #Items | #Interactions | Density |
---|---|---|---|---|
Yelp | 45,478 | 30,709 | 1,777,765 | 0.00127 |
Amazon | 58,145 | 58,052 | 2,517,437 | 0.00075 |
Gowalla | 29,859 | 40,989 | 1,027,464 | 0.00084 |
Alibaba | 300,000 | 81,614 | 1,607,813 | 0.00007 |
Dataset | Metric | BPRMF | FISM | NGCF | MultiGCCF | DGCF | LightGCN | SGL | NCL | SimGCL | XSimGCL | XDCL | Improv. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Yelp | Recall@10 | 0.0643 | 0.0714 | 0.0630 | 0.0646 | 0.0723 | 0.0730 | 0.0833 | 0.0920 | 0.0906 | 0.0920 | 0.0984 | +6.95% |
NDCG@10 | 0.0458 | 0.0510 | 0.0446 | 0.0450 | 0.0514 | 0.0520 | 0.0601 | 0.0678 | 0.0663 | 0.0678 | 0.0752 | +10.91% | |
Recall@20 | 0.1043 | 0.1119 | 0.1026 | 0.1053 | 0.1135 | 0.1163 | 0.1288 | 0.1377 | 0.1373 | 0.1402 | 0.1443 | +2.92% | |
NDCG@20 | 0.0580 | 0.0636 | 0.0567 | 0.0575 | 0.0641 | 0.0652 | 0.0739 | 0.0817 | 0.0805 | 0.0825 | 0.0888 | +7.24% | |
Recall@50 | 0.1862 | 0.1963 | 0.1864 | 0.1882 | 0.1989 | 0.2016 | 0.2140 | 0.2247 | 0.2273 | 0.2287 | 0.2318 | +1.35% | |
NDCG@50 | 0.0793 | 0.0856 | 0.0784 | 0.0790 | 0.0862 | 0.0875 | 0.0964 | 0.1046 | 0.1041 | 0.1057 | 0.1116 | +5.58% | |
Amazon | Recall@10 | 0.0607 | 0.0721 | 0.0617 | 0.0625 | 0.0737 | 0.0797 | 0.0898 | 0.0933 | 0.1015 | 0.1070 | 0.1167 | +9.06% |
NDCG@10 | 0.0430 | 0.0504 | 0.0427 | 0.0433 | 0.0521 | 0.0565 | 0.0645 | 0.0679 | 0.0738 | 0.0792 | 0.0874 | +10.35% | |
Recall@20 | 0.0956 | 0.1099 | 0.0978 | 0.0991 | 0.1128 | 0.1206 | 0.1331 | 0.1381 | 0.1477 | 0.1534 | 0.1647 | +7.36% | |
NDCG@20 | 0.0537 | 0.0622 | 0.0537 | 0.0545 | 0.0640 | 0.0689 | 0.0777 | 0.0815 | 0.0880 | 0.0933 | 0.1020 | +9.32% | |
Recall@50 | 0.1681 | 0.0183 | 0.1699 | 0.1688 | 0.1908 | 0.2012 | 0.2157 | 0.2175 | 0.2309 | 0.2330 | 0.2493 | +6.99% | |
NDCG@50 | 0.0726 | 0.0815 | 0.0725 | 0.0727 | 0.0843 | 0.0899 | 0.0992 | 0.1024 | 0.1099 | 0.1144 | 0.1243 | +8.65% | |
Gowalla | Recall@10 | 0.1158 | 0.1081 | 0.1192 | 0.1108 | 0.1252 | 0.1362 | 0.1465 | 0.1500 | 0.1512 | 0.1504 | 0.1537 | +1.65% |
NDCG@10 | 0.0833 | 0.0755 | 0.0852 | 0.0791 | 0.0902 | 0.0876 | 0.1048 | 0.1082 | 0.1102 | 0.1102 | 0.1119 | +1.54% | |
Recall@20 | 0.1695 | 0.1620 | 0.1755 | 0.1626 | 0.1829 | 0.1976 | 0.2084 | 0.2133 | 0.2146 | 0.2157 | 0.2200 | +1.99% | |
NDCG@20 | 0.0988 | 0.0913 | 0.1013 | 0.0940 | 0.1066 | 0.1152 | 0.1225 | 0.1265 | 0.1282 | 0.1289 | 0.1309 | +1.55% | |
Recall@50 | 0.2756 | 0.2673 | 0.2811 | 0.2631 | 0.2877 | 0.3044 | 0.3197 | 0.3259 | 0.3265 | 0.3266 | 0.3330 | +1.95% | |
NDCG@50 | 0.1150 | 0.1169 | 0.1270 | 0.1184 | 0.1322 | 0.1414 | 0.1497 | 0.1542 | 0.1557 | 0.1560 | 0.1587 | +1.73% | |
Alibaba | Recall@10 | 0.3030 | 0.0357 | 0.0382 | 0.0401 | 0.447 | 0.0457 | 0.0461 | 0.0477 | 0.0574 | 0.0575 | 0.0615 | +6.95% |
NDCG@10 | 0.0161 | 0.0190 | 0.0198 | 0.0207 | 0.0241 | 0.0248 | 0.0248 | 0.0259 | 0.0312 | 0.0313 | 0.0337 | +7.66% | |
Recall@20 | 0.0467 | 0.0553 | 0.0615 | 0.0634 | 0.0677 | 0.0692 | 0.0692 | 0.0713 | 0.0849 | 0.0847 | 0.0898 | +5.77% | |
NDCG@20 | 0.0203 | 0.0239 | 0.0257 | 0.0266 | 0.0299 | 0.0307 | 0.0307 | 0.0319 | 0.0382 | 0.0382 | 0.0409 | +7.06% | |
Recall@50 | 0.0799 | 0.0943 | 0.1081 | 0.1107 | 0.1120 | 0.1144 | 0.1141 | 0.1165 | 0.1361 | 0.1357 | 0.1413 | +3.82% | |
NDCG@50 | 0.0269 | 0.0317 | 0.0349 | 0.0360 | 0.0387 | 0.0396 | 0.0396 | 0.0409 | 0.0484 | 0.0484 | 0.0511 | +5.57% |
Dataset | Metric | BPRMF | DCLMF | LightGCN | LDCL | XSimGCL | XDCL |
---|---|---|---|---|---|---|---|
Yelp | Recall@10 | 0.0643 | 0.0880 (+36.85%) | 0.0730 | 0.0955 (+30.82%) | 0.0920 | 0.0984 (+6.95%) |
NDCG@10 | 0.0458 | 0.0719 (+11.81%) | 0.0520 | 0.0744 (+43.07%) | 0.0678 | 0.0752 (+10.91%) | |
Recall@20 | 0.1043 | 0.1241 (+18.98%) | 0.1163 | 0.1418 (+21.92%) | 0.1402 | 0.1443 (+2.92%) | |
NDCG@20 | 0.0580 | 0.0823 (+41.89%) | 0.0652 | 0.0811 (+24.38%) | 0.0825 | 0.0888 (+7.24%) | |
Recall@50 | 0.1862 | 0.1957 (+5.10%) | 0.2016 | 0.2298 (+13.98%) | 0.2287 | 0.2318 (+1.35%) | |
NDCG@50 | 0.0793 | 0.1006 (+26.86%) | 0.0875 | 0.1108 (+26.62%) | 0.1057 | 0.1116 (+5.58%) | |
Amazon Books | Recall@10 | 0.0607 | 0.0972 (+60.13%) | 0.0797 | 0.1108 (+39.02%) | 0.1070 | 0.1167 (+9.06%) |
NDCG@10 | 0.043 | 0.0709 (+64.88%) | 0.0565 | 0.0818 (+44.77%) | 0.0792 | 0.0874 (+10.35%) | |
Recall@20 | 0.0956 | 0.1387 (+45.08%) | 0.1206 | 0.1581 (+31.09%) | 0.1534 | 0.1647 (+7.36%) | |
NDCG@20 | 0.0537 | 0.0837 (+55.86%) | 0.0689 | 0.0961 (+39.47%) | 0.0933 | 0.1020 (+9.32%) | |
Recall@50 | 0.1681 | 0.2144 (+27.54%) | 0.2012 | 0.2438 (+21.17%) | 0.2330 | 0.2493 (+6.99%) | |
NDCG@50 | 0.0726 | 0.1036 (+42.69%) | 0.0899 | 0.1186 (+31.92%) | 0.1144 | 0.1243 (+8.65%) | |
Gowalla | Recall@10 | 0.1158 | 0.1335 (+15.28%) | 0.1362 | 0.1485 (+9.03%) | 0.1504 | 0.1537 (+2.19%) |
NDCG@10 | 0.0833 | 0.0965 (+14.76%) | 0.0876 | 0.1081 (+23.40%) | 0.1102 | 0.1119 (+1.54%) | |
Recall@20 | 0.1695 | 0.1920 (+13.27%) | 0.1976 | 0.2121 (+7.33%) | 0.2157 | 0.2200 (+1.99%) | |
NDCG@20 | 0.0988 | 0.1132 (+14.51%) | 0.1152 | 0.1263 (+9.63%) | 0.1289 | 0.1309 (+1.55%) | |
Recall@50 | 0.2756 | 0.2988 (+8.41%) | 0.3044 | 0.3264 (+7.22%) | 0.3266 | 0.3330 (+1.95%) | |
NDCG@50 | 0.1150 | 0.1392 (+21.04%) | 0.1414 | 0.1542 (+9.05%) | 0.1560 | 0.1587 (+1.73%) | |
Alibaba iFashion | Recall@10 | 0.303 | 0.0346 (+14.19%) | 0.0457 | 0.0534 (+16.84%) | 0.0575 | 0.0615 (+6.95%) |
NDCG@10 | 0.0161 | 0.0189 (+17.39%) | 0.0248 | 0.0291 (+17.33%) | 0.0313 | 0.0337 (+7.66%) | |
Recall@20 | 0.0467 | 0.0521 (+11.56%) | 0.0692 | 0.0790 (+14.16%) | 0.0847 | 0.0898 (+6.02%) | |
NDCG@20 | 0.0203 | 0.0233 (+14.77%) | 0.0307 | 0.0356 (+15.96%) | 0.0382 | 0.0409 (+7.06%) | |
Recall@50 | 0.0799 | 0.0854 (+6.88%) | 0.1144 | 0.1265 (+10.57%) | 0.1357 | 0.1413 (+4.12%) | |
NDCG@50 | 0.0269 | 0.0300 (+11.52%) | 0.0396 | 0.0451 (+13.88%) | 0.0484 | 0.0511 (+5.57%) |
Dataset | Model | L | n | K | ||||
---|---|---|---|---|---|---|---|---|
Yelp | DCLMF | - | 256 | 0.2 | - | - | - | - |
LDCL | 3 | 256 | 0.05 | - | - | - | - | |
XDCL | 3 | 256 | 0.05 | 0.15 | 0.2 | 0.005 | 2 | |
Amazon | DCLMF | - | 256 | 0.1 | - | - | - | - |
LDCL | 3 | 256 | 0.05 | - | - | - | - | |
XDCL | 3 | 256 | 0.05 | 0.15 | 0.3 | 0.005 | 2 | |
Gowalla | DCLMF | - | 256 | 0.2 | - | - | - | - |
LDCL | 3 | 256 | 0.05 | - | - | - | - | |
XDCL | 3 | 256 | 0.05 | 0.15 | 0.2 | 0.005 | 2 | |
Alibaba | DCLMF | - | 128 | 1 | - | - | - | - |
LDCL | 3 | 128 | 2 | - | - | - | - | |
XDCL | 3 | 128 | 2 | 0.15 | 0.03 | 0.005 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, J.; Zhou, Y.; Hao, S.; Feng, D.; Zheng, H.; Xu, Z. Improving Graph Collaborative Filtering from the Perspective of User–Item Interaction Directly Using Contrastive Learning. Mathematics 2024, 12, 2057. https://doi.org/10.3390/math12132057
Dong J, Zhou Y, Hao S, Feng D, Zheng H, Xu Z. Improving Graph Collaborative Filtering from the Perspective of User–Item Interaction Directly Using Contrastive Learning. Mathematics. 2024; 12(13):2057. https://doi.org/10.3390/math12132057
Chicago/Turabian StyleDong, Jifeng, Yu Zhou, Shufeng Hao, Ding Feng, Haixia Zheng, and Zhenhuan Xu. 2024. "Improving Graph Collaborative Filtering from the Perspective of User–Item Interaction Directly Using Contrastive Learning" Mathematics 12, no. 13: 2057. https://doi.org/10.3390/math12132057
APA StyleDong, J., Zhou, Y., Hao, S., Feng, D., Zheng, H., & Xu, Z. (2024). Improving Graph Collaborative Filtering from the Perspective of User–Item Interaction Directly Using Contrastive Learning. Mathematics, 12(13), 2057. https://doi.org/10.3390/math12132057