Unsteady Magnetohydrodynamics PDE of Monge–Ampère Type: Symmetries, Closed-Form Solutions, and Reductions
Abstract
:Contents
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- References
1. Introduction
- (i)
- elementary functions,
- (ii)
- elementary functions and indefinite integrals (solutions in quadrature),
- (iii)
- solutions of ODE or ODE systems.
2. Symmetries of the Magnetohydrodynamics Equation, Admissible Operators, and Invariant Transformations
3. Two-Dimensional Similarity Reductions
4. One-Dimensional Similarity Reductions and Exact Solutions
5. Exact Solutions with Multiplicative Separation of Variables
6. Reductions with Additive and Generalized Separation of Variables Leading to Stationary Monge–Ampère Equations, Exact Solutions
7. Reduction with Generalized Separation of Variables Leading to the Linear Heat Equation
8. Generalized Separable Solutions in the Form of Polynomials in One Spatial Variable
9. Reductions to a Monge–Ampère Type Equation in Traveling Wave Variables, Linearizable PDEs, and Two-Phase Solutions
10. Reduction Using a New Variable, Parabolic in Spatial Coordinates, Exact Solutions
11. Reduction Using a New Variable, Quadratic in Two Spatial Coordinates, Exact Solutions
12. Reductions and Exact Solutions in Polar Coordinates
13. Reductions and Exact Solutions in Elliptic and Hyperbolic Coordinates
14. Using a Special Point Transformation to Construct Reductions and Exact Solutions
15. Brief Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Smirnov, V.V.; Chukbar, K.V. “Phonons” in two-dimensional vortex lattices. J. Exp. Theor. Phys. 2001, 93, 126–135. [Google Scholar] [CrossRef]
- Zaburdaev, V.Y.; Smirnov, V.V.; Chukbar, K.V. Nonlinear dynamics of electron vortex lattices. Plasma Phys. Rep. 2014, 30, 214–217. [Google Scholar] [CrossRef]
- Ohkitani, K.; Sultu, F.A. Singularity formation in the Smirnov–Chukbar–Zaburdaev equation for the deformation of vortex lattices. J. Phys. A Math. Theor. 2013, 46, 205501. [Google Scholar] [CrossRef]
- Goursat, E. A Course of Mathematical Analysis; Part 1; Gostekhizdat: Moscow, Russia, 1933; Volume 3. (In Russian) [Google Scholar]
- Ovsiannikov, L.V. Group Analysis of Differential Equations; Academic Press: Boston, MA, USA, 1982. [Google Scholar]
- Fushchich, W.I.; Serov, N.I. Symmetry and some exact solutions of the multidimensional Monge–Ampère equation. Dokl. Acad. Nauk USSR 1983, 273, 543–546. (In Russian) [Google Scholar]
- Khabirov, S.V. Nonisentropic one-dimensional gas motions constructed by means of the contact group of the nonhomogeneous Monge–Ampère equation. Math. Sb. 1990, 181, 1607–1622. Erratum in Math. USSR-Sbornik 1992, 71, 447–462(In Russian) [Google Scholar] [CrossRef]
- Fushchich, W.I.; Shtelen, W.M.; Serov, N.I. Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics; Kluwer Academic: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Ibragimov, N.H. (Ed.) CRC Handbook of Lie Group Analysis of Differential Equations, Vol. 1, Symmetries, Exact Solutions and Conservation Laws; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Polyanin, A.D.; Zaitsev, V.F. Handbook of Nonlinear Partial Differential Equations, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Krylov, N.V. Sequences of convex functions and estimates of the maximum of the solution of a parabolic equation. Sib. Math. J. 1976, 17, 226–236. [Google Scholar] [CrossRef]
- Spiliotis, J. Certain results on a parabolic type Monge–Ampère equation. J. Math. Anal. Appl. 1992, 163, 484–511. [Google Scholar] [CrossRef]
- Ivochkina, N.M.; Ladyzhenskaya, O.A. Parabolic equations generated by symmetric functions of the eigenvalues of the Hessian or by the principal curvatures of a surface. I. Parabolic Monge–Ampère equations. Algebra I Anal. 1994, 6, 141–160. (In Russian) [Google Scholar]
- Chen, L.; Wang, G.; Lian, S. Convex-monotone functions and generalized solution of parabolic Monge–Ampère equation. J. Differ. Equ. 2002, 186, 558–571. [Google Scholar] [CrossRef]
- Xiong, J.; Bao, J. On Jorgens, Calabi, and Pogorelov type theorem and isolated singularities of parabolic Monge–Ampère equations. J. Differ. Equ. 2011, 250, 367–385. [Google Scholar] [CrossRef]
- Tang, L. Regularity results on the parabolic Monge–Ampère equation with VMO type data. J. Differ. Equ. 2013, 255, 1646–1656. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.; Liu, X. The initial and Neumann boundary value problem for a class parabolic Monge–Ampère equation. Abstr. Appl. Anal. 2013, 2013, 535629. [Google Scholar] [CrossRef]
- Dai, L. Exterior problems of parabolic Monge–Ampère equations for n = 2. Comput. Math. Appl. 2014, 67, 1497–1506. [Google Scholar] [CrossRef]
- Dai, L. Exterior problems for a parabolic Monge–Ampère equation. Nonlinear Anal. Theory Methods Appl. 2014, 100, 99–110. [Google Scholar] [CrossRef]
- Tang, L. Boundary regularity on the parabolic Monge–Ampère equation. J. Differ. Equ. 2015, 259, 6399–6431. [Google Scholar] [CrossRef]
- Wang, B.; Bao, J. Asymptotic behavior on a kind of parabolic Monge–Ampère equation. J. Differ. Equ. 2015, 259, 344–370. [Google Scholar] [CrossRef]
- Zhang, W.; Bao, J.; Wang, B. An extension of Jorgens–Calabi–Pogorelov theorem to parabolic Monge–Ampère equation. Calc. Var. Partial Differ. Equ. 2018, 57, 90. [Google Scholar] [CrossRef]
- Dai, L.; Bao, J. Entire solutions of Cauchy problem for parabolic Monge–Ampère equations. Adv. Nonlinear Stud. 2020, 20, 769–781. [Google Scholar]
- Karatzas, I. Adaptive control of a diffusion to a goal and a parabolic Monge–Ampère-type equation. Asian J. Math. 1997, 1, 295–313. [Google Scholar] [CrossRef]
- Budd, C.J.; Galaktionov, V.A. On self-similar blow-up in evolution equations of Monge–Ampère type. IMA J. Appl. Math. 2013, 78, 338–378. [Google Scholar] [CrossRef]
- An, N.; Bao, J.; Liu, Z. Entire solutions to the parabolic Monge–Ampère equation with unbounded nonlinear growth in time. Nonlinear Anal. 2024, 239, 113441. [Google Scholar] [CrossRef]
- Ren, C. The first initial-boundary value problem for fully nonlinear parabolic equations generated by functions of the eigenvalues of the Hessian. J. Math. Anal. Appl. 2008, 339, 1362–1373. [Google Scholar] [CrossRef]
- Dai, L.; Guo, X. Parabolic Hessian equations outside a cylinder. Mathematics 2022, 10, 2839. [Google Scholar] [CrossRef]
- Pogorelov, A.V. Extrinsic Geometry of Convex Surfaces; American Math. Soc.: Providence, RI, USA, 1973. [Google Scholar]
- Leibov, O. Reduction and exact solutions of the Monge–Ampère equation. J. Nonlinear Math. Phys. 1997, 4, 146–148. [Google Scholar] [CrossRef]
- Arrigo, D.J.; Hill, J.M. On a class of linearizable Monge–Ampère equations. J. Nonlinear Math. Phys. 1998, 5, 115–119. [Google Scholar] [CrossRef]
- Rakhmelevich, I.V. On solutions of the Monge–Ampère equation with power-law non-linearity with respect to first derivatives. Tomsk State Univ. J. Math. Mech. 2016, 4, 33–43. [Google Scholar] [CrossRef]
- Feroze, T.; Umair, M. Optimal system and exact solutions of Monge–Ampère equation. Commun. Math. Appl. 2021, 12, 825–833. [Google Scholar] [CrossRef]
- Polyanin, A.D. Handbook of Exact Solutions to Mathematical Equations; CRC Press: Boca Raton, FL, USA; London, UK, 2024. [Google Scholar]
- Courant, R.; Hilbert, D. Methods of Mathematical Physics, Vol. 2; Wiley–Intersci. Publ.: New York, NY, USA, 1989. [Google Scholar]
- Sulman, M.M.; Williams, J.F.; Russell, R.D. An efficient approach for the numerical solution of the Monge–Ampère equation. Appl. Numer. Math. 2011, 61, 298–307. [Google Scholar] [CrossRef]
- Feng, X.; Lewis, T. Nonstandard local discontinuous Galerkin methods for fully nonlinear second order elliptic and parabolic equations in high dimensions. J. Sci. Comput. 2018, 77, 1534–1565. [Google Scholar] [CrossRef]
- Liu, H.; Glowinski, R.; Leung, S.; Qian, J. A finite element/operator-splitting method for the numerical solution of the three dimensional Monge–Ampère equation. J. Sci. Comput. 2019, 81, 2271–2302. [Google Scholar] [CrossRef]
- Caboussat, A.; Gourzoulidis, D.; Picasso, D. An adaptive method for the numerical solution of a 2D Monge–Ampère equation. In Proceedings of the 10th International Conference on Adaptive Modeling and Simulation (ADMOS 2021), Gothenburg, Sweden, 21–23 June 2021. [Google Scholar]
- Dubinov, A.E.; Kitayev, I.N. New exact solutions of the equation of non-linear dynamics of a lattice of electronic vortices in plasma in the framework of electron magnetohydrodynamics. Magnetohydrodynamics 2020, 56, 369–375. [Google Scholar]
- Rakhmelevich, I.V. Nonautonomous evolution equation of Monge–Ampère type with two space variables. Russ. Math. 2023, 67, 52–64. [Google Scholar] [CrossRef]
- Galaktionov, V.A.; Svirshchevskii, S.R. Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Bluman, G.W.; Kumei, S. Symmetries and Differential Equations; Springer: New York, NY, USA, 1989. [Google Scholar]
- Olver, P.J. Application of Lie Groups to Differential Equations, 2nd ed.; Springer: New York, NY, USA, 2000. [Google Scholar]
- Andreev, V.K.; Kaptsov, O.V.; Pukhnachov, V.V.; Rodionov, A.A. Applications of Group-Theoretical Methods in Hydrodynamics; Kluwer: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Vaneeva, O.O.; Johnpillai, A.G.; Popovych, R.O.; Sophocleous, C. Extended group analysis of variable coefficient reaction-diffusion equations with power nonlinearities. J. Math. Anal. Appl. 2007, 330, 1363–1386. [Google Scholar] [CrossRef]
- Vaneeva, O.O.; Popovych, R.O.; Sophocleous, C. Extended group analysis of variable coefficient reaction-diffusion equations with exponential nonlinearities. J. Math. Anal. Appl. 2012, 396, 225–242. [Google Scholar] [CrossRef]
- Shagolshem, S.; Bira, B.; Sil, S. Application of symmetry analysis to viscoelastic fluid model. Commun. Nonlinear Sci. Numer. Simulat. 2023, 125, 107417. [Google Scholar] [CrossRef]
- Clarkson, P.A.; Kruskal, M.D. New similarity reductions of the Boussinesq equation. J. Math. Phys. 1989, 30, 2201–2213. [Google Scholar] [CrossRef]
- Nucci, M.C.; Clarkson, P.A. The nonclassical method is more general than the direct method for symmetry reductions. An example of the Fitzhugh–Nagumo equation. Phys. Lett. A 1992, 164, 49–56. [Google Scholar] [CrossRef]
- Olver, P.J. Direct reduction and differential constraints. Proc. R. Soc. Lond. Ser. A 1994, 444, 509–523. [Google Scholar]
- Clarkson, P.A.; Ludlow, D.K.; Priestley, T.J. The classical, direct and nonclassical methods for symmetry reductions of nonlinear partial differential equations. Meth. Appl. Anal. 1997, 4, 173–195. [Google Scholar] [CrossRef]
- Hood, S. On direct, implicit reductions of a nonlinear diffusion equation with an arbitrary function—generalizations of Clarkson’s and Kruskal’s method. IMA J. Appl. Math. 2000, 64, 223–244. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zhurov, A.I. Direct functional separation of variables and new exact solutions to axisymmetric unsteady boundary-layer equations. Commun. Nonlinear Sci. Numer. Simulat. 2016, 31, 11–20. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zhurov, A.I. Separation of Variables and Exact Solutions to Nonlinear PDEs; CRC Press: Boca Raton, FL, USA; London, UK, 2022. [Google Scholar]
- Bluman, G.W.; Cole, J.D. The general similarity solution of the heat equation. J. Math. Mech. 1969, 18, 1025–1042. [Google Scholar]
- Levi, D.; Winternitz, P. Nonclassical symmetry reduction: Example of the Boussinesq equation. J. Phys. A 1989, 22, 2915–2924. [Google Scholar] [CrossRef]
- Pucci, E. Similarity reductions of partial differential equations. J. Phys. A Math. Gen. 1992, 25, 2631–2640. [Google Scholar] [CrossRef]
- Arrigo, D.; Broadbridge, P.; Hill, J.M. Nonclassical symmetry solutions and the methods of Bluman–Cole and Clarkson–Kruskal. J. Math. Phys. 1993, 34, 4692–4703. [Google Scholar] [CrossRef]
- Pucci, E.; Saccomandi, G. Evolution equations, invariant surface conditions and functional separation of variables. Physica D 2000, 139, 28–47. [Google Scholar] [CrossRef]
- Saccomandi, G. A remarkable class of non-classical symmetries of the steady two-dimensional boundary-layer equations. J. Phys. A Math. Gen. 2004, 37, 7005–7017. [Google Scholar] [CrossRef]
- Bradshaw-Hajek, D.H. Nonclassical symmetry solutions for non-autonomous reaction-diffusion equations. Symmetry 2019, 11, 208. [Google Scholar] [CrossRef]
- Pucci, E.; Saccomandi, G. Partial differential equations admitting a given nonclassical point symmetry. Stud. Appl. Math. 2020, 145, 81–96. [Google Scholar] [CrossRef]
- Cherniha, R.; Davydovych, V. Nonlinear Reaction-Diffusion Systems: Conditional Symmetry, Exact Solutions and Their Applications in Biology; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Cherniha, R.; Davydovych, V.; King, J.R. The Shigesada–Kawasaki–Teramoto model: Conditional symmetries, exact solutions and their properties. Commun. Nonlinear Sci. Numer. Simulat. 2023, 124, 107313. [Google Scholar] [CrossRef]
- Galaktionov, V.A. Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities. Proc. R. Soc. Edinburgh Sect. A 1995, 125, 225–246. [Google Scholar] [CrossRef]
- Galaktionov, V.A.; Posashkov, S.A. Exact-solutions and invariant subspace for nonlinear gradient-diffusion equations. Comp. Math. Math. Phys. 1994, 34, 313–321. [Google Scholar]
- Galaktionov, V.A.; Posashkov, S.A.; Svirshchevskii, S.R. Generalized separation of variables for differential equations with polynomial nonlinearities. Diff. Equ. 1995, 31, 233–240. [Google Scholar]
- Polyanin, A.D. Exact solutions to the Navier–Stokes equations with generalized separation of variables. Dokl. Phys. 2001, 46, 726–731. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zhurov, A.I. Unsteady axisymmetric boundary-layer equations: Transformations, properties, exact solutions, order reduction and solution method. Int. J. Non-Linear Mech. 2015, 74, 40–50. [Google Scholar] [CrossRef]
- Kosov, A.A.; Semenov, E.I. Exact solutions of the generalized Richards equation with power-law nonlinearities. Diff. Equ. 2020, 56, 1119–1129. [Google Scholar] [CrossRef]
- Kosov, A.A.; Semenov, E.I. Reduction method and new exact solutions of the multidimensional nonlinear heat equation. Diff. Equ. 2022, 58, 187–194. [Google Scholar] [CrossRef]
- Svirshchevskii, S.R. Exact solutions of a nonlinear diffusion equation on polynomial invariant subspace of maximal dimension. Commun. Nonlinear Sci. Numer. Simulat. 2022, 112, 106515. [Google Scholar] [CrossRef]
- Grundland, A.M.; Infeld, E. A family of non-linear Klein-Gordon equations and their solutions. J. Math. Phys. 1992, 33, 2498–2503. [Google Scholar] [CrossRef]
- Miller, W.; Rubel, L.A. Functional separation of variables for Laplace equations in two dimensions. J. Phys. A 1993, 26, 1901–1913. [Google Scholar] [CrossRef]
- Zhdanov, R.Z. Separation of variables in the non-linear wave equation. J. Phys. A 1994, 27, L291–L297. [Google Scholar] [CrossRef]
- Doyle, P.W.; Vassiliou, P.J. Separation of variables for the 1-dimensional non-linear diffusion equation. Int. J. Non-Linear Mech. 1998, 33, 315–326. [Google Scholar] [CrossRef]
- Estevez, P.G.; Qu, C.; Zhang, S. Separation of variables of a generalized porous medium equation with nonlinear source. J. Math. Anal. Appl. 2002, 275, 44–59. [Google Scholar] [CrossRef]
- Polyanin, A.D. Construction of exact solutions in implicit form for PDEs: New functional separable solutions of non-linear reaction-diffusion equations with variable coefficients. Int. J. Non-Linear Mech. 2019, 111, 95–105. [Google Scholar] [CrossRef]
- Polyanin, A.D. Functional separable solutions of nonlinear reaction-diffusion equations with variable coefficients. Appl. Math. Comput. 2019, 347, 282–292. [Google Scholar] [CrossRef]
- Polyanin, A.D. Functional separable solutions of nonlinear convection-diffusion equations with variable coefficients. Commun. Nonlinear Sci. Numer. Simulat. 2019, 73, 379–390. [Google Scholar] [CrossRef]
- Polyanin, A.D. Construction of functional separable solutions in implicit form for non-linear Klein–Gordon type equations with variable coefficients. Int. J. Non-Linear Mech. 2019, 114, 29–40. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zhurov, A.I. Separation of variables in PDEs using nonlinear transformations: Applications to reaction-diffusion type equations. Appl. Math. Lett. 2020, 100, 106055. [Google Scholar] [CrossRef]
- Sidorov, A.F.; Shapeev, V.P.; Yanenko, N.N. Method of Differential Constraints and its Applications in Gas Dynamics; Nauka: Novosibirsk, Russia, 1984. (In Russian) [Google Scholar]
- Kaptsov, O.V.; Verevkin, L.V. Differential constraints and exact solutions of nonlinear diffusion equations. J. Phys. A Math. Gen. 2003, 36, 1401–1414. [Google Scholar] [CrossRef]
- Meleshko, S.V. Methods for Constructing Exact Solutions of Partial Differential Equations; Springer: New York, NY, USA, 2005. [Google Scholar]
- Kruglikov, B. Symmetry approaches for reductions of PDEs, differential constraints and Lagrange–Charpit method. Acta Appl. Math. 2008, 101, 145–161. [Google Scholar] [CrossRef]
- Calogero, F.; Degasperis, A. Spectral Transform and Solitons: Tolls to Solve and Investigate Nonlinear Evolution Equations; North-Holland Publ.: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Ablowitz, M.J.; Clarkson, P.A. Solitons, Nonlinear Evolution Equations and Inverse Scattering; Cambridge Univ. Press: Cambridge, UK, 1991. [Google Scholar]
- Kudryashov, N.A. Simplest equation method to look for exact solutions of nonlinear differential equations. Chaos Solitons Fractals 2005, 24, 1217–1231. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Methods of Nonlinear Mathematical Physics; Izd. Dom Intellekt: Dolgoprudnyi, Russia, 2010. (In Russian) [Google Scholar]
- Conte, R.; Musette, M. The Painlevé Handbook, 2nd ed.; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Aksenov, A.V.; Polyanin, A.D. Methods for constructing complex solutions of nonlinear PDEs using simpler solutions. Mathematics 2021, 9, 345. [Google Scholar] [CrossRef]
- Aksenov, A.V.; Polyanin, A.D. Review of methods for constructing exact solutions of equations of mathematical physics based on simpler solutions. Theor. Math. Phys. 2022, 211, 567–594. [Google Scholar] [CrossRef]
- Bedrikovetsky, P.; Borazjani, S. Exact solutions for gravity-segregated flows in porous media. Mathematics 2022, 10, 2455. [Google Scholar] [CrossRef]
- Meleshko, S.V.; Moyo, S. On the complete group classification of the reaction–diffusion equation with a delay. J. Math. Anal. Appl. 2008, 338, 448–466. [Google Scholar] [CrossRef]
- Long, F.-S.; Meleshko, S.V. On the complete group classification of the one-dimensional nonlinear Klein–Gordon equation with a delay. Math. Methods Appl. Sci. 2016, 39, 3255–3270. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Sorokin, V.G. A method for constructing exact solutions of nonlinear delay PDEs. J. Math. Anal. Appl. 2021, 494, 124619. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Sorokin, V.G. Nonlinear pantograph-type diffusion PDEs: Exact solutions and the principle of analogy. Mathematics 2021, 9, 511. [Google Scholar] [CrossRef]
- Aibinu, M.O.; Thakur, S.C.; Moyo, S. Exact solutions of nonlinear delay reaction–diffusion equations with variable coefficients. Partial Diff. Equ. Appl. Math. 2021, 4, 100170. [Google Scholar] [CrossRef]
- Sorokin, V.G.; Vyazmin, A.V. Nonlinear reaction–diffusion equations with delay: Partial survey, exact solutions, test problems, and numerical integration. Mathematics 2022, 10, 1886. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Sorokin, V.G. Reductions and exact solutions of nonlinear wave-type PDEs with proportional and more complex delays. Mathematics 2023, 11, 516. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Sorokin, V.G. Exact solutions of reaction-diffusion PDEs with anisotropic time delay. Mathematics 2023, 11, 3111. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Sorokin, V.G.; Zhurov, A.I. Delay Ordinary and Partial Differential Equations; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Tikhonov, A.N.; Samarskii, A.A. Equations of Mathematical Physics; Dover Publ.: New York, NY, USA, 1990. [Google Scholar]
- Polyanin, A.D.; Nazaikinskii, V.E. Handbook of Linear Partial Differential Equations for Engineers and Scientists, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Polyanin, A.D.; Zaitsev, V.F. Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems; CRC Press: Boca Raton, FL, USA; London, UK, 2018. [Google Scholar]
- Ivanova, N.M. Exact solutions of diffusion-convection equations. Dyn. PDEs 2008, 5, 139–171. [Google Scholar] [CrossRef]
- Amerov, T.K. On conditional invariance of nonlinear heat equation. In Theoretical and Algebraic Analysis of Equations of Mathematical Physics; Inst. of Mathematics Kiev: Kiev, Ukraine, 1990; pp. 12–14. [Google Scholar]
- King, J.R. Some non-self-similar solutions to a nonlinear diffusion equations. J. Phys. A Math. Gen. 1992, 25, 4861–4868. [Google Scholar] [CrossRef]
- Broadbridge, P.; Bradshaw-Hajek, B.H.; Hutchinson, A.J. Conditionally integrable PDEs, non-classical symmetries and applications. Proc. R. Soc. A 2023, 479, 20230209. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polyanin, A.D.; Aksenov, A.V. Unsteady Magnetohydrodynamics PDE of Monge–Ampère Type: Symmetries, Closed-Form Solutions, and Reductions. Mathematics 2024, 12, 2127. https://doi.org/10.3390/math12132127
Polyanin AD, Aksenov AV. Unsteady Magnetohydrodynamics PDE of Monge–Ampère Type: Symmetries, Closed-Form Solutions, and Reductions. Mathematics. 2024; 12(13):2127. https://doi.org/10.3390/math12132127
Chicago/Turabian StylePolyanin, Andrei D., and Alexander V. Aksenov. 2024. "Unsteady Magnetohydrodynamics PDE of Monge–Ampère Type: Symmetries, Closed-Form Solutions, and Reductions" Mathematics 12, no. 13: 2127. https://doi.org/10.3390/math12132127
APA StylePolyanin, A. D., & Aksenov, A. V. (2024). Unsteady Magnetohydrodynamics PDE of Monge–Ampère Type: Symmetries, Closed-Form Solutions, and Reductions. Mathematics, 12(13), 2127. https://doi.org/10.3390/math12132127