Symbolic Computation of the Lie Algebra se(3) of the Euclidean Group SE(3): An Application to the Infinitesimal Kinematics of Robot Manipulators
Abstract
:1. Introduction
2. Theory
2.1. Plücker Coordinates
2.2. Chasles’ Theorem
- The velocity component along the Mozzi axis is the same for all points on the body m.
- The velocity component of any point of the body m along an axis perpendicular to the ISA is null.
- The velocity vector of any point of the body m lies in a plane defined by two vectors; the first one is parallel to the ISA, while the second one is normal to the ISA and to the position vector of the point of interest and an arbitrary point on the ISA.
2.3. The Lie Algebra of the Euclidean Group
- Addition (+)The operation of addition (+) has the following properties:
- (a)
- Commutative ;
- (b)
- Associative ;
- (c)
- Identical additive , ;
- (d)
- scalar multiplication, . .
- Lie bracketThe Lie bracket has the following operations
- (a)
- Anti-symmetry (anticommutativity),
- (b)
- Alternativity (nilpotent), ;
- (c)
- Bilinearity, ;
- (d)
- Jacobi identity, ;
- (e)
- product rule, .
- Bilinearity
- (a)
- Klein form , ;
- (b)
- Killing form , .
2.4. Open Kinematic Chains
2.4.1. Velocity
2.4.2. Acceleration
3. Symbolic Computation: Maple Sheets
4. Examples
4.1. Planar RPR Serial Manipulator
4.2. PUMA Robot
4.2.1. Position Analysis
4.2.2. Velocity Analysis
4.2.3. Acceleration Analysis
4.2.4. Numerical Application
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ball, R.S. A Treatise on the Theory of Screws; Cambridge University Press: Cambridge, UK, 1900; reprinted 1998. [Google Scholar]
- Hunt, K.H. Kinematic Geometry of Mechanisms; Oxford University Press: New York, NY, USA, 1978. [Google Scholar]
- Phillips, J. Freedom in Machinery: Introducing Screw Theory; Cambridge University Press: Cambridge, UK, 1984; Volume 1. [Google Scholar]
- Karger, A. Singularity analysis of serial robot-manipulators. ASME Mech. Des. 1996, 118, 520–525. [Google Scholar] [CrossRef]
- Müller, A. Higher derivatives of the kinematic mapping and some applications. Mech. Mach. Theory 2014, 76, 70–85. [Google Scholar] [CrossRef]
- Wu, Y.; Carricato, M. Identification and geometric characterization of Lie triple screw systems and their exponential images. Mech. Mach. Theory 2017, 107, 305–323. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, Y.; Zhao, T. Fundamental equation of mechanism kinematic geometry: Mapping curve in se(3) to counterpart in SE(3). Mech. Mach. Theory 2020, 146, 103732. [Google Scholar] [CrossRef]
- Sanchez-Garcia, A.J.; Rico, J.M.; Cervantes-Sanchez, J.J.; Lopez-Custodio, P.C. A mobility determination method for parallel platforms based on the Lie algebra of SE(3) and Its Subspaces. ASME J. Mech. Robot. 2021, 13, 031015. [Google Scholar] [CrossRef]
- Chen, J.; Huang, Z.; Tian, Q. A multisymplectic Lie algebra variational integrator for flexible multibody dynamics on the special Euclidean group SE(3). Mech. Mach. Theory 2022, 174, 104918. [Google Scholar] [CrossRef]
- Hassani, H.; Avazzadeh, Z.; Agarwal, P.; Ebadi, M.J.; Eshkaftaki, A.B. Generalized Bernoulli—Laguerre Polynomials: Applications in Coupled Nonlinear System of Variable-Order Fractional PDEs. J. Optim. Theory Appl. 2024, 200, 371–393. [Google Scholar] [CrossRef]
- Avazzadeh, Z.; Hassani, H.; Ebadi, M.J.; Bayati Eshkaftaki, A.; Hendy, A.S. An optimization method for solving a general class of the inverse system of nonlinear fractional order PDEs. Int. J. Comput. Math. 2024, 101, 138–153. [Google Scholar] [CrossRef]
- Hodge, W.V.D.; Pedoe, D. Methods of Algebraic Geometry; Cambridge University Press: Cambridge, UK, 1994; Volume 1. [Google Scholar]
- Mason, M.T. Mechanics of Robotic Manipulation; MIT Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Palais, B.; Palais, R.; Rodi, S. A Disorienting Look at Euler’s Theorem on the Axis of a Rotation. Am. Math. Mon. 2009, 116, 892–909. [Google Scholar] [CrossRef]
- Chasles, M. Note sur les propriétés générales du système de deux corps semblables entr’eux. Bull. Sci. Math. Astron. Phys. Chim. 1830, 4, 321–326. [Google Scholar]
- Mozzi, G. Discorso Matematico Sopra il Rotamento Momentaneo Dei Corpi; Nella Stamperia di Donato Campo: Campo, Italy, 1763. [Google Scholar]
- von Mises, R. Motorrechnung; ein neues Hilfsmittel der Mechanik. ZAMM 1924, 4, 155–181. [Google Scholar] [CrossRef]
- Gallardo, J.; Rico, J.M. Screw theory and helicoidal fields. In Proceedings of the ASME 25th Biennial Mechanisms Conference, Atlanta, GA, USA, 13–16 September 1998. Paper DETC98/MECH-5893. [Google Scholar]
- Gallardo-Alvarado, J. Análisis Cinemáticos de Orden Superior de Cadenas Espaciales, Mediante el Álgebra de Tornillos, y sus Aplicaciones. Doctoral Dissertation, Instituto Tecnológico de la Laguna, Torreón, México, April 1999. (In Spanish). [Google Scholar]
- Valderrama-Rodríguez, J.I.; Rico, J.M.; Cervantes-Sánchez, J.J. A general method for the determination of the instantaneous screw axes of one-degree-of-freedom spatial mechanisms. Mech. Sci. 2020, 11, 91–99. [Google Scholar] [CrossRef]
- Rico-Martinez, J.M.; Duffy, J. An application of screw algebra to the acceleration analysis of serial chains. Mech. Mach. Theory 1996, 31, 445–457. [Google Scholar] [CrossRef]
- Sugimoto, K.; Duffy, J. Application of linear algebra to screw systems. Mech. Mach. Theory 1982, 17, 73–83. [Google Scholar] [CrossRef]
- Brand, L. Vector and Tensor Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1947. [Google Scholar]
- Gallardo-Alvarado, J.; Garcia-Murillo, M.A.; Aguilera-Camacho, L.D.; Alcaraz-Caracheo, L.A.; Sandoval-Castro, X.Y. An approach to solving the forward kinematics of the 5-RPUR (3T2R) parallel manipulator. J. Mech. Sci. Technol. 2023, 37, 1443–1453. [Google Scholar] [CrossRef]
Link Offset [mm] | Joint Angle | Link Length [mm] | Twist Angle [rad] |
---|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallardo-Alvarado, J.; Garcia-Murillo, M.A.; Tabares-Martinez, J.M.; Sandoval-Castro, X.Y. Symbolic Computation of the Lie Algebra se(3) of the Euclidean Group SE(3): An Application to the Infinitesimal Kinematics of Robot Manipulators. Mathematics 2024, 12, 2538. https://doi.org/10.3390/math12162538
Gallardo-Alvarado J, Garcia-Murillo MA, Tabares-Martinez JM, Sandoval-Castro XY. Symbolic Computation of the Lie Algebra se(3) of the Euclidean Group SE(3): An Application to the Infinitesimal Kinematics of Robot Manipulators. Mathematics. 2024; 12(16):2538. https://doi.org/10.3390/math12162538
Chicago/Turabian StyleGallardo-Alvarado, Jaime, Mario A. Garcia-Murillo, Juan Manuel Tabares-Martinez, and X. Yamile Sandoval-Castro. 2024. "Symbolic Computation of the Lie Algebra se(3) of the Euclidean Group SE(3): An Application to the Infinitesimal Kinematics of Robot Manipulators" Mathematics 12, no. 16: 2538. https://doi.org/10.3390/math12162538
APA StyleGallardo-Alvarado, J., Garcia-Murillo, M. A., Tabares-Martinez, J. M., & Sandoval-Castro, X. Y. (2024). Symbolic Computation of the Lie Algebra se(3) of the Euclidean Group SE(3): An Application to the Infinitesimal Kinematics of Robot Manipulators. Mathematics, 12(16), 2538. https://doi.org/10.3390/math12162538