Generating Stochastic Structural Planes Using Statistical Models and Generative Deep Learning Models: A Comparative Investigation
Abstract
:1. Introduction
2. Methods
2.1. The Employed Statistical Models
2.1.1. The Monte Carlo Method
2.1.2. The Copula-Based Method
2.2. The Employed Generative Deep Learning Models
2.2.1. GAN
2.2.2. DDPM
- Forward diffusion process
- Reverse diffusion process
- Loss function
2.3. Metrics for Comparative Evaluation
3. Results and Analysis
3.1. Experimental Data
3.1.1. Dataset 1: Structural Plane Set of Valle Study Area
3.1.2. Dataset 2: Structural Plane Set of Tunhovd Study Area
3.1.3. Dataset 3: Structural Plane Set of Straumklumpen Study Area
3.1.4. Dataset 4: Structural Plane Set of Tunhovd Study Area
3.1.5. Dataset 5: Structural Plane Set of Tunhovd Study Area
3.2. Experimental Environments
3.3. Experimental Results
3.3.1. Generated Results of Dataset 1
3.3.2. Generated Results of Dataset 2
3.3.3. Generated Results of Dataset 3
3.3.4. Generated Results of Dataset 4
3.3.5. Generated Results of Dataset 5
3.4. Comparative Analysis
4. Discussion
4.1. Performance Analysis of the Statistical Methods
4.2. Performance Analysis of the Deep Generative Models
4.3. Comparative Analysis of Statistical Methods and Deep Generative Models
4.4. Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, W.; Chen, J.p.; Liu, C.; Huang, R.; Li, M.; Zhang, Y. Determination of Geometrical and Structural Representative Volume Elements at the Baihetan Dam Site. Rock Mech. Rock Eng. 2012, 45, 409–419. [Google Scholar] [CrossRef]
- Li, X.; Zuo, Y.; Zhuang, X.; Zhu, H. Estimation of fracture trace length distributions using probability weighted moments and L-moments. Eng. Geol. 2014, 168, 69–85. [Google Scholar] [CrossRef]
- Han, X.; Chen, J.; Wang, Q.; Li, Y.; Zhang, W.; Yu, T. A 3D Fracture Network Model for the Undisturbed Rock Mass at the Songta Dam Site Based on Small Samples. Rock Mech. Rock Eng. 2016, 49, 611–619. [Google Scholar] [CrossRef]
- Shi, G.; Goodman, R.E. The key blocks of unrolled joint traces in developed maps of tunnel walls. Int. J. Numer. Anal. Methods Geomech. 1989, 13, 131–158. [Google Scholar] [CrossRef]
- He, P.; Li, L.P.; Wang, G.; Xu, F.; Sun, S.Q. Probabilistic prediction of the spatial distribution of potential key blocks during tunnel surrounding rock excavation. Nat. Hazards 2022, 111, 1721–1740. [Google Scholar] [CrossRef]
- Lian, X.G.; Li, Z.J.; Yuan, H.Y.; Liu, J.B.; Zhang, Y.J.; Liu, X.Y.; Wu, Y.R. Rapid identification of landslide, collapse and crack based on low-altitude remote sensing image of UAV. J. Mt. Sci. 2020, 17, 2915–2928. [Google Scholar] [CrossRef]
- Robinson, P.C. Connectivity of fracture systems-a percolation theory approach. J. Phys. A Math. Gen. 1983, 16, 605. [Google Scholar] [CrossRef]
- Dershowitz, W.S.; Herda, H.H. Interpretation of fracture spacing and intensity. In Proceedings of the The 33rd U.S. Symposium on Rock Mechanics (USRMS), ARMA-92-0757, Santa Fe, NM, USA, 3–5 June 1992. [Google Scholar]
- Kulatilake, P.H.S.W.; Wathugala, D.N.; Stephansson, O. Joint network modelling with a validation exercise in Stripa mine, Sweden. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1993, 30, 503–526. [Google Scholar] [CrossRef]
- Kulatilake, P.H.S.W.; Chen, J.; Teng, J.; Shufang, X.; Pan, G. Discontinuity geometry characterization in a tunnel close to the proposed permanent shiplock area of the three gorges dam site in China. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1996, 33, 255–277. [Google Scholar] [CrossRef]
- Shapiro, A.; Delport, J.L. Statistical analysis of jointed rock data. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1991, 28, 375–382. [Google Scholar] [CrossRef]
- Wang, S.; Ni, P.; Guo, M. Spatial characterization of joint planes and stability analysis of tunnel blocks. Tunn. Undergr. Space Technol. 2013, 38, 357–367. [Google Scholar] [CrossRef]
- Wang, X.G.; Jia, Z.X.; Chen, Z.Y.; Xu, Y. Determination of discontinuity persistent ratio by Monte-Carlo simulation and dynamic programming. Eng. Geol. 2016, 203, 83–98. [Google Scholar] [CrossRef]
- Zanbak, C. Statistical interpretation of discontinuity contour diagrams. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1977, 14, 111–120. [Google Scholar] [CrossRef]
- Kulatilake, P.H.S.W. Fitting Fisher Distributions to Discontinuity Orientation Data. J. Geol. Educ. 1985, 33, 266–269. [Google Scholar] [CrossRef]
- Lei, Q.; Latham, J.P.; Tsang, C.F. The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks. Comput. Geotech. 2017, 85, 151–176. [Google Scholar] [CrossRef]
- Warburton, P.M. A computer program for reconstructing blocky rock geometry and analyzing single block stability. Comput. Geosci. 1985, 11, 707–712. [Google Scholar] [CrossRef]
- Tang, X.S.; Li, D.Q.; Zhou, C.B.; Phoon, K.K.; Zhang, L.M. Impact of copulas for modeling bivariate distributions on system reliability. Struct. Saf. 2013, 44, 80–90. [Google Scholar] [CrossRef]
- Hohn, M.E.; Britton, J.Q. A geostatistical case study in West Virginia: All coals are not the same. Int. J. Coal Geol. 2013, 112, 125–133. [Google Scholar] [CrossRef]
- Ghosh, S. Modelling bivariate rainfall distribution and generating bivariate correlated rainfall data in neighbouring meteorological subdivisions using copula. Hydrol. Process. 2010, 24, 3558–3567. [Google Scholar] [CrossRef]
- Fan, Y.; Huang, G.; Baetz, B.W.; Li, Y.; Huang, K. Development of a copula-based particle filter (CopPF) approach for hydrologic data assimilation under consideration of parameter interdependence. Water Resour. Res. 2017, 53, 4850–4875. [Google Scholar] [CrossRef]
- Ma, Z.; Mei, G.; Xu, N. Generative deep learning for data generation in natural hazard analysis: Motivations, advances, challenges, and opportunities. Artif. Intell. Rev. 2024, 57, 160. [Google Scholar] [CrossRef]
- Meng, H.; Mei, G.; Qi, X.; Xu, N.; Peng, J. Generating Stochastic Structural Planes by Considering Parameter Correlations Using Deep Generative Adversarial Networks. Rock Mech. Rock Eng. 2023, 56, 9215–9230. [Google Scholar] [CrossRef]
- Han, S.; Li, M.; Wang, G. Copula-based simulating and analyzing methods of rock mass fractures. Comput. Geotech. 2020, 127, 103779. [Google Scholar] [CrossRef]
- Metropolis, N.C.; Ulam, S.M. The Monte Carlo method. J. Am. Stat. Assoc. 1949, 44 247, 335–341. [Google Scholar] [CrossRef]
- Priest, S.D.; Samaniego, A. A Model For The Analysis Of Discontinuity Characteristics In Two Dimensions. In Proceedings of the 5th ISRM Congress, Melbourne, Australia, 10–15 April 1983. [Google Scholar]
- Einstein, H.H.; Baecher, G.B. Probabilistic and statistical methods in engineering geology. Rock Mech. Rock Eng. 1983, 16, 39–72. [Google Scholar] [CrossRef]
- Pointe, P.R.L. Derivation of parent fracture population statistics from trace length measurements of fractal fracture populations. Int. J. Rock Mech. Min. Sci. 2002, 39, 381–388. [Google Scholar] [CrossRef]
- Jimenez-Rodriguez, R.; Sitar, N. Influence of Stochastic Discontinuity Network Parameters on the Formation of Removable Blocks in Rock Slopes. Rock Mech. Rock Eng. 2008, 41, 563–585. [Google Scholar] [CrossRef]
- Zhang, Z.; Lei, Q. Object-oriented modeling for three-dimensional multi-block systems. Comput. Geotech. 2013, 48, 208–227. [Google Scholar] [CrossRef]
- Guo, L.; Li, X.; Zhou, Y.; Zhang, Y. Generation and verification of three-dimensional network of fractured rock masses stochastic discontinuities based on digitalization. Environ. Earth Sci. 2015, 73, 7075–7088. [Google Scholar] [CrossRef]
- Rubinstein, R.Y. Simulation and the Monte Carlo method. In Deep Generative Modeling; John Wiley & Sons: New York, NY, USA, 1981; pp. 20–37. [Google Scholar]
- Sklar, M. Fonctions de répartition à n dimensions et leurs marges. In Annales de l’ISUP; Institut de Statistique de l’Université de Paris: Paris, France, 1989; Volume 8, pp. 229–231. [Google Scholar]
- AghaKouchak, A.; Bárdossy, A.; Habib, E. Conditional simulation of remotely sensed rainfall data using a non-Gaussian v-transformed copula. Adv. Water Resour. 2010, 33, 624–634. [Google Scholar] [CrossRef]
- Xu, B.; Pei, X.; Li, J.; Yang, H.; Wang, X. Exploring the stability of unsaturated soil slope under rainfall infiltration conditions: A study based on multivariate interrelated random fields using R-vine copula. Catena 2024, 234, 107587. [Google Scholar] [CrossRef]
- Hagspiel, S.; Papaemannouil, A.; Schmid, M.; Andersson, G. Copula-based modeling of stochastic wind power in Europe and implications for the Swiss power grid. Appl. Energy 2012, 96, 33–44. [Google Scholar] [CrossRef]
- Grothe, O.; Schnieders, J. Spatial dependence in wind and optimal wind power allocation: A copula-based analysis. Energy Policy 2011, 39, 4742–4754. [Google Scholar] [CrossRef]
- Atalay, F.; Tercan, A.E. Coal resource estimation using Gaussian copula. Int. J. Coal Geol. 2017, 175, 1–9. [Google Scholar] [CrossRef]
- Oussidi, A.; Elhassouny, A. Deep generative models: Survey. In Proceedings of the 2018 International Conference on Intelligent Systems and Computer Vision (ISCV), Fez, Morocco, 2–4 April 2018; pp. 1–8. [Google Scholar]
- Huang, Y.; Han, X.; Zhao, L. Recurrent neural networks for complicated seismic dynamic response prediction of a slope system. Eng. Geol. 2021, 289, 106198. [Google Scholar] [CrossRef]
- Lin, M.; Teng, S.; Chen, G.; Lv, J.; Hao, Z. Optimal CNN-based semantic segmentation model of cutting slope images. Front. Struct. Civ. Eng. 2022, 16, 414–433. [Google Scholar] [CrossRef]
- Hua, Y.; Guo, J.; Zhao, H. Deep belief networks and deep learning. In Proceedings of the 2015 International Conference on Intelligent Computing and Internet of Things, Harbin, China, 17–18 January 2015; pp. 1–4. [Google Scholar]
- Li, H.; Xu, Q.; He, Y.; Fan, X.; Li, S. Modeling and predicting reservoir landslide displacement with deep belief network and EWMA control charts: A case study in Three Gorges Reservoir. Landslides 2020, 17, 693–707. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, S.; Tai, Y.W.; Tang, C.K. Image Generation from Sketch Constraint Using Contextual GAN. In Proceedings of the European Conference on Computer Vision, Venice, Italy, 8–14 September 2018; pp. 205–220. [Google Scholar]
- Liu, S.; Li, S.; Cheng, H. Towards an End-to-End Visual-to-Raw-Audio Generation with GAN. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 1299–1312. [Google Scholar] [CrossRef]
- Imran, A.S.; Yang, R.; Kastrati, Z.; Daudpota, S.M.; Shaikh, S. The impact of synthetic text generation for sentiment analysis using GAN based models. Egypt. Inform. J. 2022, 23, 547–557. [Google Scholar] [CrossRef]
- Imrie, F.; Bradley, A.R.; van der Schaar, M.; Deane, C.M. Deep generative models for 3D linker design. J. Chem. Inf. Model. 2020, 60, 1983–1995. [Google Scholar] [CrossRef]
- Frazer, J.; Notin, P.; Dias, M.; Gomez, A.; Min, J.K.; Brock, K.; Gal, Y.; Marks, D.S. Disease variant prediction with deep generative models of evolutionary data. Nature 2021, 599, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Riesselman, A.J.; Ingraham, J.B.; Marks, D.S. Deep generative models of genetic variation capture the effects of mutations. Nat. Methods 2018, 15, 816–822. [Google Scholar] [CrossRef] [PubMed]
- Tomczak, J.M. Deep generative modeling for neural compression. In Deep Generative Modeling; Springer: Berlin/Heidelberg, Germany, 2021; pp. 173–188. [Google Scholar]
- Li, Y.; He, X.; Zhu, W.; AlSinan, M.; Kwak, H.; Hoteit, H. Digital Rock Reconstruction Using Wasserstein GANs with Gradient Penalty. In Proceedings of the International Petroleum Technology Conference, Riyadh, Saudi Arabia, 21–23 February 2022; p. D012S123R001. [Google Scholar]
- Al-Najjar, H.A.; Pradhan, B.; Sarkar, R.; Beydoun, G.; Alamri, A. A new integrated approach for landslide data balancing and spatial prediction based on generative adversarial networks (GAN). Remote. Sens. 2021, 13, 4011. [Google Scholar] [CrossRef]
- Esmaeili, M. Enhancing digital rock analysis through generative artificial intelligence: Diffusion models. Neurocomputing 2024, 587, 127676. [Google Scholar] [CrossRef]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. Adv. Neural Inf. Process. Syst. (NIPS) 2014, 27, 2672–2680. [Google Scholar]
- Sohl-Dickstein, J.; Weiss, E.; Maheswaranathan, N.; Ganguli, S. Deep unsupervised learning using nonequilibrium thermodynamics. In Proceedings of the 32nd International Conference on Machine Learning, PMLR, Lille, France, 6–11 July 2015; pp. 2256–2265. [Google Scholar]
- Ho, J.; Jain, A.; Abbeel, P. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst. 2020, 33, 6840–6851. [Google Scholar]
- Darvell, L.E. Drone-Derived SfM Photogrammetry and Digital Rock Mass Mapping of Rock Slopes. Master’s Thesis, University of Oslo, Oslo, Norway, 2021. [Google Scholar]
- Kilkenny, M.F.; Robinson, K.M. Data quality: “Garbage in—garbage out”. Health Inf. Manag. J. 2018, 47, 103–105. [Google Scholar] [CrossRef]
Metrics | Principles of the Metrics | |
---|---|---|
Qualitative analysis | Comparison of histograms of probability distributions | The histogram illustrates the distribution of values of a variable across a specified range. Each bar in the graph corresponds to the frequency of values within that range, presenting a visual depiction of the data distribution through a series of vertical bars or lines of different heights. A histogram serves as a precise graphical portrayal of the numerical data distribution. |
Scatter plot Comparison | A scatter plot represents the distribution of data points on the Cartesian coordinate system in regression analysis. It provides a visual assessment of the potential correlation strength between two variables, aiding in the selection of a suitable function to model the data points. | |
Quantitative calculation | Comparison of mean value and variance | Mean and variance are important statistics that describe the characteristics of the data and can provide a visual representation of the overall characteristics and distribution of the dataset. |
Pearson correlation coefficient | The Pearson correlation coefficient is the most commonly used method for conducting correlation analysis. It serves the purpose of the strength of correlation between two variables. A larger absolute value of the correlation coefficient indicates a stronger correlation, while a value closer to zero suggests a weaker correlation. |
Groups | Location | Number | Distribution Type | Correlation | Pearson Correlation Coefficient | ||
---|---|---|---|---|---|---|---|
Dip Direction | Dip Angle | Trace Length | |||||
Dataset 1 | Valle study area | 40 | Normal | Normal | Log-normal | Negative | −0.374 |
Dataset 2 | Tunhovd study area | 157 | Normal | Normal | Log-normal | Positive | 0.361 |
Dataset 3 | Straumklumpen study area | 257 | Normal | Normal | Log-normal | Negative | −0.342 |
Dataset 4 | Tunhovd study area | 325 | Normal | Normal | Log-normal | Negative | −0.252 |
Dataset 5 | Oernlia study area | 766 | Normal | Normal | Log-normal | Negative | −0.685 |
Dip Direction (°) | Dip Angle (°) | Trace Length (m) | |||||||
---|---|---|---|---|---|---|---|---|---|
Distribution Type | Mean Value | Standard Deviation | Distribution Type | Mean Value | Standard Deviation | Distribution Type | Mean Value | Standard Deviation | |
Measured factual | Normal | 74.80 | 6.04 | Normal | 46.72 | 4.19 | Log-normal | 1.88 | 2.24 |
Monte Carlo method | Normal | 73.30 | 6.56 | Normal | 46.73 | 3.69 | Log-normal | 1.75 | 1.61 |
Copula-based method | Normal | 75.23 | 6.32 | Normal | 46.40 | 4.59 | Log-normal | 1.79 | 1.63 |
GAN | Normal | 77.22 | 5.34 | Normal | 46.88 | 4.65 | Log-normal | 1.98 | 1.90 |
DDPM | Normal | 75.73 | 8.94 | Normal | 45.97 | 4.67 | Log-normal | 4.01 | 3.00 |
Dip Direction (°) | Dip Angle (°) | Trace Length (m) | |||||||
---|---|---|---|---|---|---|---|---|---|
Distribution Type | Mean Value | Standard Deviation | Distribution Type | Mean Value | Standard Deviation | Distribution Type | Mean Value | Standard Deviation | |
Measured factual | Normal | 262.29 | 10.56 | Normal | 50.29 | 5.15 | Log-normal | 1.77 | 1.18 |
Monte Carlo method | Normal | 261.83 | 9.93 | Normal | 50.08 | 5.45 | Log-normal | 1.75 | 1.61 |
Copula-based method | Normal | 263.72 | 10.69 | Normal | 50.49 | 4.99 | Log-normal | 1.68 | 1.10 |
GAN | Normal | 258.88 | 12.01 | Normal | 46.99 | 5.14 | Log-normal | 1.13 | 0.57 |
DDPM | Normal | 261.41 | 12.07 | Normal | 49.49 | 5.59 | Log-normal | 1.78 | 1.17 |
Dip Direction (°) | Dip Angle (°) | Trace Length (m) | |||||||
---|---|---|---|---|---|---|---|---|---|
Distribution Type | Mean Value | Standard Deviation | Distribution Type | Mean Value | Standard Deviation | Distribution Type | Mean Value | Standard Deviation | |
Measured factual | Normal | 217.12 | 7.84 | Normal | 38.13 | 4.58 | Log-normal | 6.17 | 3.24 |
Monte Carlo method | Normal | 217.23 | 8.27 | Normal | 38.05 | 4.78 | Log-normal | 5.88 | 2.64 |
Copula-based method | Normal | 218.22 | 7.85 | Normal | 37.45 | 4.52 | Log-normal | 5.94 | 2.72 |
GAN | Normal | 216.87 | 5.62 | Normal | 38.06 | 4.27 | Log-normal | 6.21 | 3.14 |
DDPM | Normal | 217.54 | 8.49 | Normal | 37.70 | 5.52 | Log-normal | 6.39 | 3.80 |
Dip Direction (°) | Dip Angle (°) | Trace Length (m) | |||||||
---|---|---|---|---|---|---|---|---|---|
Distribution Type | Mean Value | Standard Deviation | Distribution Type | Mean Value | Standard Deviation | Distribution Type | Mean Value | Standard Deviation | |
Measured factual | Normal | 80.50 | 6.35 | Normal | 54.63 | 4.04 | Log-normal | 2.25 | 1.41 |
Monte Carlo method | Normal | 80.1 | 6.34 | Normal | 54.39 | 4.20 | Log-normal | 2.31 | 1.43 |
Copula-based method | Normal | 76.69 | 6.49 | Normal | 54.72 | 4.13 | Log-normal | 2.24 | 1.14 |
GAN | Normal | 80.73 | 5.70 | Normal | 54.70 | 3.06 | Log-normal | 2.22 | 1.03 |
DDPM | Normal | 81.63 | 6.12 | Normal | 54.71 | 3.83 | Log-normal | 2.35 | 1.53 |
Dip Direction (°) | Dip Angle (°) | Trace Length (m) | |||||||
---|---|---|---|---|---|---|---|---|---|
Distribution Type | Mean Value | Standard Deviation | Distribution Type | Mean Value | Standard Deviation | Distribution Type | Mean Value | Standard Deviation | |
Measured factual | Normal | 258.78 | 12.46 | Normal | 36.03 | 9.02 | Log-normal | 3.95 | 2.80 |
Monte Carlo method | Normal | 258.78 | 12.44 | Normal | 36.02 | 9.01 | Log-normal | 3.85 | 1.67 |
Copula-based method | Normal | 259.30 | 12.14 | Normal | 35.74 | 8.96 | Log-normal | 4.06 | 1.80 |
GAN | Normal | 259.77 | 11.23 | Normal | 35.38 | 8.14 | Log-normal | 3.88 | 2.77 |
DDPM | Normal | 258.59 | 11.94 | Normal | 35.53 | 8.41 | Log-normal | 4.57 | 2.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, H.; Xu, N.; Zhu, Y.; Mei, G. Generating Stochastic Structural Planes Using Statistical Models and Generative Deep Learning Models: A Comparative Investigation. Mathematics 2024, 12, 2545. https://doi.org/10.3390/math12162545
Meng H, Xu N, Zhu Y, Mei G. Generating Stochastic Structural Planes Using Statistical Models and Generative Deep Learning Models: A Comparative Investigation. Mathematics. 2024; 12(16):2545. https://doi.org/10.3390/math12162545
Chicago/Turabian StyleMeng, Han, Nengxiong Xu, Yunfu Zhu, and Gang Mei. 2024. "Generating Stochastic Structural Planes Using Statistical Models and Generative Deep Learning Models: A Comparative Investigation" Mathematics 12, no. 16: 2545. https://doi.org/10.3390/math12162545
APA StyleMeng, H., Xu, N., Zhu, Y., & Mei, G. (2024). Generating Stochastic Structural Planes Using Statistical Models and Generative Deep Learning Models: A Comparative Investigation. Mathematics, 12(16), 2545. https://doi.org/10.3390/math12162545