Optimizing Two-Dimensional Irregular Pattern Packing with Advanced Overlap Optimization Techniques
Abstract
:1. Introduction
2. Image Preprocessing
2.1. Resizing of the Image
2.2. Expansion of the Pattern Image
3. Mathematical Model and Its Optimization
3.1. Modified Genetic Algorithm
3.1.1. Encoding
3.1.2. Mutation
3.1.3. Decoding
3.2. Iterative Overlap Optimization Placement (IOOP)
3.2.1. Overlap Detection
3.2.2. Overlap Optimization
3.2.3. The Packing of the First Pattern
3.2.4. The Packing of the Subsequent Patterns
3.2.5. Left-to-Right Pattern Placement Strategy
Algorithm 1 Iterative Overlap Optimization Placement Algorithm Pseudocode |
|
3.2.6. Layout Optimization Pseudocode
4. Packing Results
5. Conclusions
- 1.
- Enhanced Spatial and Material Efficiency: The Iterative Overlap Optimization Placement (IOOP) method significantly outperforms the non-iterative approach in terms of spatial utilization and material efficiency. It optimizes the use of available space and materials by dynamically adjusting the placement of patterns, thus minimizing waste.
- 2.
- Flexibility and Robustness: Demonstrated across various pattern groups, IOOP’s dynamic pattern ordering showcases superior flexibility and robustness. This adaptability leads to more efficient layouts and visually appealing arrangements, evidencing the method’s capability to handle diverse and complex patterns effectively.
- 3.
- Broad Application Potential: IOOP’s proven effectiveness suggests a wide applicability in sectors requiring detailed spatial planning and optimization. Its ability to enhance material utilization while maintaining high-quality layouts positions it as a valuable tool in manufacturing, design, and beyond.
- 4.
- Future Research and Applications: Encouraging outcomes from the use of IOOP point towards the need for further exploration into its application across different industries. Future research could aim to refine the method, exploring the integration with advanced technologies to tackle even more complex spatial optimization challenges.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, B.; Zhang, Y.; Hu, J.; Li, J.; Wu, F.; Peng, Q.; Zhang, Q. Two-dimensional irregular packing problems: A review. Front. Mech. Eng. 2022, 8, 966691. [Google Scholar] [CrossRef]
- Martins, T.C.D.; Tsuzuki, M.S. Rotational placement of irregular polygons over containers with fixed dimensions using simulated annealing and no-fit polygons. J. Braz. Soc. Mech. Sci. Eng. 2008, 30, 205–212. [Google Scholar] [CrossRef]
- Gomes, A.M. Irregular packing problems: Industrial applications and new directions using computational geometry. IFAC Proc. Vol. 2013, 46, 378–383. [Google Scholar] [CrossRef]
- Martinez-Sykora, A.; Alvarez-Valdes, R.; Bennell, J.A.; Ruiz, R.; Tamarit, J.M. Matheuristics for the irregular bin packing problem with free rotations. Eur. J. Oper. Res. 2017, 258, 440–455. [Google Scholar] [CrossRef]
- Rodrigues, M.O.; Toledo, F.M. A clique covering MIP model for the irregular strip packing problem. Comput. Oper. Res. 2017, 87, 221–234. [Google Scholar] [CrossRef]
- Elkeran, A. A new approach for sheet nesting problem using guided cuckoo search and pairwise clustering. Eur. J. Oper. Res. 2013, 231, 757–769. [Google Scholar] [CrossRef]
- Pantoja-Benavides, G.; Álvarez Martínez, D.; Torres, F.P. The Normalized Direct Trigonometry Model for the Two-Dimensional Irregular Strip Packing Problem. Mathematics 2024, 12, 2414. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, B.; Li, X.; Jia, Q.; Duan, W.; Wang, G. Fidelity-adaptive evolutionary optimization algorithm for 2D irregular cutting and packing problem. J. Intell. Manuf. 2024. [Google Scholar] [CrossRef]
- Bartmeyer, P.M.; Oliveira, L.T.; Leão, A.A.S.; Toledo, F.M.B. An expert system to react to defective areas in nesting problems. Expert Syst. Appl. 2022, 209, 118207. [Google Scholar] [CrossRef]
- Qi, D.; Yang, W.; Ding, L.; Wu, Y.; Tian, C.; Yuan, L.; Wang, Y.; Huang, Z. An Intelligent Approach to the Unit Nesting Problem of Coil Material. Appl. Sci. 2023, 13, 9067. [Google Scholar] [CrossRef]
- Cherri, L.H.; Mundim, L.R.; Andretta, M.; Toledo, F.M.; Oliveira, J.F.; Carravilla, M.A. Robust mixed-integer linear programming models for the irregular strip packing problem. Eur. J. Oper. Res. 2016, 253, 570–583. [Google Scholar] [CrossRef]
- Alvarez-Valdes, R.; Martinez, A.; Tamarit, J.M. A branch & bound algorithm for cutting and packing irregularly shaped pieces. Int. J. Prod. Econ. 2013, 145, 463–477. [Google Scholar] [CrossRef]
- Abeysooriya, R.P.; Bennell, J.A.; Martinez-Sykora, A. Jostle heuristics for the 2D-irregular shapes bin packing problems with free rotation. Int. J. Prod. Econ. 2018, 195, 12–26. [Google Scholar] [CrossRef]
- Mundim, L.R.; Andretta, M.; de Queiroz, T.A. A biased random key genetic algorithm for open dimension nesting problems using no-fit raster. Expert Syst. Appl. 2017, 81, 358–371. [Google Scholar] [CrossRef]
- Cherri, L.H.; Cherri, A.C.; Carravilla, M.A.; Oliveira, J.F.; Toledo, F.M.B.; Vianna, A.C.G. An innovative data structure to handle the geometry of nesting problems. Int. J. Prod. Res. 2018, 56, 7085–7102. [Google Scholar] [CrossRef]
- Peralta, J.; Andretta, M.; Oliveira, J.F. Solving irregular strip packing problems with free rotations using separation lines. Pesqui. Oper. 2018, 38, 195–214. [Google Scholar] [CrossRef]
- Romanova, T.; Pankratov, A.; Litvinchev, I.; Plankovskyy, S.; Tsegelnyk, Y.; Shypul, O. Sparsest packing of two-dimensional objects. Int. J. Prod. Res. 2021, 59, 3900–3915. [Google Scholar] [CrossRef]
- Wang, A.; Hanselman, C.L.; Gounaris, C.E. A customized branch-and-bound approach for irregular shape nesting. J. Glob. Optim. 2018, 71, 935–955. [Google Scholar] [CrossRef]
- Mundim, L.R.; Andretta, M.; Carravilla, M.A.; Oliveira, J.F. A general heuristic for two-dimensional nesting problems with limited-size containers. Int. J. Prod. Res. 2018, 56, 709–732. [Google Scholar] [CrossRef]
- Pinheiro, P.R.; Júnior, B.A.; Saraiva, R.D. A random-key genetic algorithm for solving the nesting problem. Int. J. Comput. Integr. Manuf. 2016, 29, 1159–1165. [Google Scholar] [CrossRef]
- Hu, X.; Li, J.; Cui, J. Greedy Adaptive Search: A New Approach for Large-Scale Irregular Packing Problems in the Fabric Industry. IEEE Access 2020, 8, 91476–91487. [Google Scholar] [CrossRef]
- Stoyan, Y.; Pankratov, A.; Romanova, T. Cutting and packing problems for irregular objects with continuous rotations: Mathematical modelling and non-linear optimization. J. Oper. Res. Soc. 2016, 67, 786–800. [Google Scholar] [CrossRef]
- Cherri, L.H.; Cherri, A.C.; Soler, E.M. Mixed integer quadratically-constrained programming model to solve the irregular strip packing problem with continuous rotations. J. Glob. Optim. 2018, 72, 89–107. [Google Scholar] [CrossRef]
- Bortfeldt, A. A genetic algorithm for the two-dimensional strip packing problem with rectangular pieces. Eur. J. Oper. Res. 2006, 172, 814–837. [Google Scholar] [CrossRef]
- Rodrigues, C.D.; Cherri, A.C.; de Araujo, S.A. Strip based compact formulation for two-dimensional guillotine cutting problems. Comput. Oper. Res. 2023, 149, 106044. [Google Scholar] [CrossRef]
- Silva, E.; Oliveira, J.F.; Silveira, T.; Mundim, L.; Carravilla, M.A. The Floating-Cuts model: A general and flexible mixed-integer programming model for non-guillotine and guillotine rectangular cutting problems. Omega 2023, 114, 102738. [Google Scholar] [CrossRef]
- Atmaja, R.D.; Murti, M.A.; Halomoan, J.; Suratman, F.Y. An image processing method to convert RGB image into binary. Indones. J. Electr. Eng. Comput. Sci. 2016, 3, 377–382. [Google Scholar] [CrossRef]
- Alam, T.; Qamar, S.; Dixit, A.; Benaida, M. Genetic algorithm: Reviews, implementations and applications. Int. J. Eng. Pedagog. 2021, 10, 57–77. [Google Scholar] [CrossRef]
- Al-Bayati, A.; Qubat, N. An Implementation of an Initial Scale in Solving Binary Knapsack Problem Using a Genetic Algorithm. AL-Rafidain J. Comput. Sci. Math. 2007, 4, 43–57. [Google Scholar] [CrossRef]
- Liu, P.; Gu, X.; Liu, X.; Zhao, X. Failure prevention on application of flexible printed circuits. Adv. Mater. Res. 2012, 383–390, 4648–4652. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, L.; Ding, L.; Khan, A.M.; Mushtaq, R.T.; Alkahtani, M. Optimizing Two-Dimensional Irregular Pattern Packing with Advanced Overlap Optimization Techniques. Mathematics 2024, 12, 2670. https://doi.org/10.3390/math12172670
Meng L, Ding L, Khan AM, Mushtaq RT, Alkahtani M. Optimizing Two-Dimensional Irregular Pattern Packing with Advanced Overlap Optimization Techniques. Mathematics. 2024; 12(17):2670. https://doi.org/10.3390/math12172670
Chicago/Turabian StyleMeng, Longhui, Liang Ding, Aqib Mashood Khan, Ray Tahir Mushtaq, and Mohammed Alkahtani. 2024. "Optimizing Two-Dimensional Irregular Pattern Packing with Advanced Overlap Optimization Techniques" Mathematics 12, no. 17: 2670. https://doi.org/10.3390/math12172670
APA StyleMeng, L., Ding, L., Khan, A. M., Mushtaq, R. T., & Alkahtani, M. (2024). Optimizing Two-Dimensional Irregular Pattern Packing with Advanced Overlap Optimization Techniques. Mathematics, 12(17), 2670. https://doi.org/10.3390/math12172670