On One Approach to Obtaining Estimates of the Rate of Convergence to the Limiting Regime of Markov Chains
Abstract
:1. Introduction
2. Preliminaries
3. Upper Bounds for the Rate of Convergence
4. Relationship between Cauchy Operators
5. Homogeneous BDPs
6. One Example of the Quasi-Birth–Death Process
7. Illustrative Examples
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mitrophanov, A.Y. The Arsenal of Perturbation Bounds for Finite Continuous-Time Markov Chains: A Perspective. Mathematics 2024, 12, 1608. [Google Scholar] [CrossRef]
- Giorno, V.; Nobile, A. On a class of birth-death processes with time-varying intensity functions. Appl. Math. Comput. 2020, 379, 125255. [Google Scholar] [CrossRef]
- Viswanath, N. Transient study of Markov models with time-dependent transition rates. Oper. Res. 2020, 1, 35. [Google Scholar] [CrossRef]
- Schwarz, J.A.; Selinka, G.; Stolletz, R. Performance analysis of time-dependent queueing systems: Survey and classification. Omega 2016, 63, 170–189. [Google Scholar] [CrossRef]
- Kwon, S.; Gautam, N. Guaranteeing performance based on time-stability for energy-efficient data centers. IIE Trans. 2016, 48, 812–825. [Google Scholar] [CrossRef]
- Ivanova, D.V.; Markova, E.V.; Shorgin, S.Y.; Gaidamaka, Y.V. Priority-based eMBB and URLLC traffic coexistence models in 5G NR industrial deployments. Inform. Appl. 2023, 17, 64–70. [Google Scholar] [CrossRef]
- Samoylov, A.K.; Platonova, A.A.; Shorgin, V.S.; Gaidamaka, Y.V. On modeling the effects of multicast traffic servicing in 5G NR networks. Inform. Appl. 2023, 17, 71–77. [Google Scholar] [CrossRef]
- Daraseliya, A.V.; Sopin, E.S.; Moltchanov, D.A.; Samouylov, K.E. Analysis of 5G NR base stations offloading by means of NR-U technology. Inform. Appl. 2021, 15, 98–111. [Google Scholar] [CrossRef]
- Sopin, E.S.; Maslov, A.R.; Shorgin, V.S.; Begishev, V.O. Modeling insistent user behavior in 5G New Radio networks with rate adaptation and blockage. Inform. Appl. 2023, 17, 25–32. [Google Scholar] [CrossRef]
- Rasmi, K.; Jacob, M.J.; Alexander Dudin, A. Krishnamoorthy. Queueing Inventory System with Multiple Service Nodes and Addressed Retrials from a Common Orbit. Methodol. Comput. Appl. Probab. 2024, 26, 1–15. [Google Scholar] [CrossRef]
- D’Apice, C.; D’arienzo, M.P.; Dudin, A.; Manzo, R. Optimal Hysteresis Control via a Queuing System with Two Heterogeneous Energy-Consuming Servers. Mathematics 2023, 11, 4515. [Google Scholar] [CrossRef]
- Dudin, A.N.; Dudin, S.A.; Klimenok, V.I.; Dudina, O.S. Stability of Queueing Systems with Impatience, Balking and Non-Persistence of Customers. Mathematics 2024, 12, 2214. [Google Scholar] [CrossRef]
- Barabanova, E.A.; Vishnevsky, V.M.; Vytovtov, K.A.; Semenova, O.V. Methods of analysis of information-measuring system performance under fault conditions. Phys. Bases Instrum. 2022, 11, 49–59. Available online: https://elibrary.ru/item.asp?id=54046598 (accessed on 20 March 2024). [CrossRef]
- Motyer, A.J.; Taylor, P.G. Decay rates for quasi-birth-and-death processes with countably many phases and tridiagonal block generators. Adv. Appl. Probab. 2006, 38, 522. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, Q. Stability analysis of semi-Markov switched stochastic systems. Automatica 2018, 94, 72–80. [Google Scholar] [CrossRef]
- Earnshaw, B.A.; Keener, J.P. Global asymptotic stability of solutions of nonautonomous master equations. SIAM J. Appl. Dyn. Syst. 2010, 9, 220–237. [Google Scholar] [CrossRef]
- Down, D.; Meyn, S.P.; Tweedie, R.L. Exponential and uniform ergodicity of Markov processes. Ann. Probab. 1995, 23, 1671–1691. [Google Scholar] [CrossRef]
- Meyn, S.P.; Tweedie, R.L. Markov Chains and Stochastic Stability; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Kartashov, N.V. Strongly stable Markov chains. J. Soviet Math. 1986, 34, 1493–1498. [Google Scholar] [CrossRef]
- Zeifman, A.; Leorato, S.; Orsingher, E.; Satin, Y.; Shilova, G. Some universal limits for nonhomogeneous birth and death processes. Queueing Syst. 2006, 52, 139–151. [Google Scholar] [CrossRef]
- Zeifman, A.; Razumchik, R.; Satin, Y.; Kiseleva, K.; Korotysheva, A.; Korolev, V. Bounds on the Rate of Convergence for One Class of Inhomogeneous Markovian Queueing Models with Possible Batch Arrivals and Services. Int. J. Appl. Math. Comput. Sci. 2018, 28, 141–154. [Google Scholar] [CrossRef]
- Zeifman, A.; Satin, Y.; Kiseleva, K.; Korolev, V.; Panfilova, T. On limiting characteristics for a non-stationary two-processor heterogeneous system. Appl. Math. Comput. 2019, 351, 48–65. [Google Scholar] [CrossRef]
- Usov, I.; Satin, Y.; Zeifman, A.; Korolev, V. Ergodicity Bounds and Limiting Characteristics for a Modified Prendiville Model. Mathematics 2022, 1, 4401. [Google Scholar] [CrossRef]
- Kovalev, I.A.; Satin, Y.A.; Sinitcina, A.V.; Zeifman, A.I. On an approach for estimating the rate of convergence for nonstationary Markov models of queueing systems. Inform. Appl. 2022, 16, 75–82. [Google Scholar] [CrossRef]
- Zeifman, A.I.; Satin, Y.A.; Kovalev, I.A. On one nonstationary service model with catastrophes and heavy tails. Inform. Appl. 2021, 15, 20–25. [Google Scholar] [CrossRef]
- Satin, Y.A. On the bounds of the rate of convergence for Mt/Mt/1 model with two different requests. Syst. Means Inform. 2021, 31, 17–27. [Google Scholar] [CrossRef]
- Usov, I.; Satin, Y.; Zeifman, A. On the rate of convergence and limiting characteristics for one quasi-birth-death process. Inform. Appl. 2023, 7, 49–57. [Google Scholar] [CrossRef]
- Evans, R.V. Geometric distribution in some two-dimensional queuing systems. Oper. Res. 1967, 15, 830–846. [Google Scholar] [CrossRef]
- Wallace, V. The Solution of Quasi Birth and Death Processes Arising from Multiple Access Computer Systems. Ph.D. Thesis, Systems Engineering Laboratory, University of Michigan, Ann Arbor, MI, USA, 1969. [Google Scholar]
- Neuts, M.F. Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach; Johns Hopkins Press: Baltimore, MD, USA, 1981. [Google Scholar]
- Bladt, M.; Neuts, M.F. Matrix-Exponential Distributions: Calculus and Interpretations via Flows. Stoch. Model. 2003, 19, 113–124. [Google Scholar] [CrossRef]
- Neuts, M.F. Structured Stochastic Matrices of M/G/1 Type and Their Applications; Marcel Dekker: New York, NY, USA, 1989. [Google Scholar]
- He, Q.; Neuts, M.F. Two M/M/1 queues with transfers of customers. Queueing Syst. 2002, 42, 377–400. [Google Scholar] [CrossRef]
- Ost, A. Quasi-Birth-and-Death Processes. In Performance of Communication Systems; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar] [CrossRef]
- Daleckii, J.L.; Krein, M.G. Stability of solutions of differential equations in Banach space. Am. Math. Soc. 2002, 43, 1024–1102. [Google Scholar]
- Van Doorn, E.A. Conditions for exponential ergodicity and bounds for the decay parameter of a birth-death process. Adv. Appl. Probab. 1985, 17, 514–530. [Google Scholar] [CrossRef]
- Fadiloglu, M.M.; Yeralan, S. Models of production lines as quasi-birth-death processes. Math. Comput. Model. 2002, 35, 913–930. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satin, Y.; Razumchik, R.; Zeifman, A.; Usov, I. On One Approach to Obtaining Estimates of the Rate of Convergence to the Limiting Regime of Markov Chains. Mathematics 2024, 12, 2763. https://doi.org/10.3390/math12172763
Satin Y, Razumchik R, Zeifman A, Usov I. On One Approach to Obtaining Estimates of the Rate of Convergence to the Limiting Regime of Markov Chains. Mathematics. 2024; 12(17):2763. https://doi.org/10.3390/math12172763
Chicago/Turabian StyleSatin, Yacov, Rostislav Razumchik, Alexander Zeifman, and Ilya Usov. 2024. "On One Approach to Obtaining Estimates of the Rate of Convergence to the Limiting Regime of Markov Chains" Mathematics 12, no. 17: 2763. https://doi.org/10.3390/math12172763
APA StyleSatin, Y., Razumchik, R., Zeifman, A., & Usov, I. (2024). On One Approach to Obtaining Estimates of the Rate of Convergence to the Limiting Regime of Markov Chains. Mathematics, 12(17), 2763. https://doi.org/10.3390/math12172763