Survey on Roman {2}-Domination
Abstract
:1. Introduction
2. Essential Definitions and Notations
3. Roman -Domination
3.1. General Results
- (i)
- ;
- (ii)
- if and only if ;
- (iii)
- if then ;
- (iv)
- ;
- (v)
- if and only if ;
- (vi)
- if then ;
- (vii)
- if G is connected and then ;
- (viii)
- if then ;
- (ix)
- if then .
3.2. Special Classes of Graphs
- (i)
- Let n be a positive integer greater than 2. Then,
- (ii)
- Let n be a positive integer greater than 3. Then,
- (i)
- If , then
- (ii)
- If , then
- (iii)
- If , , then
- (i)
- , for .
- (ii)
- , for .
- (iii)
- , for and .
- (iv)
- , .
- (i)
- ;
- (ii)
- , and if and only if .
- (i)
- If and for some positive integer r and s, then .
- (ii)
- For an odd integer , .
- (iii)
- For an odd integer , .
- (iv)
- For positive integer , .
3.3. Algorithmic Complexity
4. Roman -Domination Variants
4.1. Perfect Roman -Domination
4.2. Total Roman -Domination
- (i)
- every vertex satisfies that , and
- (ii)
- every vertex is adjacent to at least one vertex .
- (i)
- .
- (ii)
- .
- (i)
- .
- (ii)
- .
- (i)
- For any graph G without isolated vertices, . The bound is sharp and holds for the star graph when .
- (ii)
- For any graph G of order n and ,
- (i)
- For ,
- (ii)
- For , .
- (iii)
- If the graph G is a Hamiltonian graph of order n, then
- (iv)
- If the graph G of order n has a Hamiltonian path, then
4.3. Independent Roman -Domination
4.4. Roman -Reinforcement and Roman -Bondage
4.5. Total Roman -Reinforcement Number
4.6. Restrained Roman -Domination
4.7. Secure Roman -Domination
4.8. Quasi-Total Roman -Domination
- (i)
- .
- (ii)
- .
- (iii)
- If or G is a claw-free graph, then
- (iv)
- For any integer , and .
- (v)
- If , then .
- (vi)
- If , then .
- (vii)
- If G is a graph with no isolated vertex, then
- (a)
- (b)
- if and only if , and
- (c)
- .
- (viii)
- For any graph G with every component of order at least three, then
- (a)
- ,
- (b)
- , and
- (c)
- .
- (ix)
- Gallai-type theorem: For any graph G, .
4.9. Signed Roman -Domination
4.10. Starred Roman -Domination
4.11. The Roman -Domatic Number
- (i)
- .
- (ii)
- if and only if G is isomorphic to the complete graph .
- (iii)
- If , then , and the equality holds if and only if or G is the complete graph.
- (i)
- There is one 4-regular graph of order for which .
- (ii)
- There is no 7-regular graph of order for which .
4.12. The Covering Roman -Domination
4.13. The Global Roman -Domination
4.14. Outer-Independent Roman -Domination
4.15. -Domination
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chellali, M.; Haynes, T.W.; Hedetniemi, S.T.; McRae, A.A. Roman 2-domination. Discrete Appl. Math. 2016, 204, 22–28. [Google Scholar] [CrossRef]
- ReVelle, C. Can you protect the Roman Empire? Johns Hopkins 1997, 49, 40. [Google Scholar]
- ReVelle, C. Test your solution to Can you protect the Roman Empire? Johns Hopkins 1997, 49, 70. [Google Scholar]
- Revelle, C.; Rosing, K. Defendens Imperium Romanum: A classical problem in military strategy. Am. Math. Mon. 2000, 107, 585–594. [Google Scholar] [CrossRef]
- Stewart, I. Defend the Roman Empire! Sci. Am. 1999, 281, 136–138. [Google Scholar] [CrossRef]
- Cockayne, E.J.; Dreyer, P.A., Jr.; Hedetniemi, S.M.; Hedetniemi, S.T. Roman domination in graphs. Discrete Math. 2004, 278, 11–22. [Google Scholar] [CrossRef]
- Henning, M.A.; Klostermeyer, W.F. Italian domination in trees. Discrete Appl. Math. 2017, 217, 557–564. [Google Scholar] [CrossRef]
- Rad, N.J.; Hajibaba, M. Some notes on the Roman domination number and Italian domination number in graphs. J. Phys. Conf. Ser. 2017, 890, 012123. [Google Scholar]
- Gao, H.; Xi, C.; Li, K.; Zhang, Q.; Yang, Y. The Italian domination numbers of generalized Petersen graphs P(n,3). Mathematics 2019, 7, 714. [Google Scholar] [CrossRef]
- Volkmann, L. Italian domination in digraphs. J. Comb. Math. Comb. Comput. 2019, 111, 269–278. [Google Scholar]
- Hajibaba, M.; Rad, N.J. On domination, 2-domination, and Italian domination number. Util. Math. 2019, 111, 271–280. [Google Scholar]
- Gao, H.; Xu, T.; Yang, Y. Bagging approach for Italian domination in Cn□Pm. IEEE Access 2019, 7, 105224–105234. [Google Scholar] [CrossRef]
- Kim, K. The Italian domination numbers of some products of directed cycles. Mathematics 2020, 8, 1472. [Google Scholar] [CrossRef]
- Van Bommel, C. Italian domination of Cartesian products of directed cycles. Discrete Appl. Math. 2021, 299, 82–86. [Google Scholar] [CrossRef]
- Henning, M.A.; Hedetniemi, S.T. Defending the Roman Empire—A new strategy. Discrete Math. 2003, 266, 239–251. [Google Scholar] [CrossRef]
- Roushini Leely Pushpam, P.; Malini Mai, T. Weak Roman domination in graphs. Discuss. Math. Graph Theory 2011, 31, 115. [Google Scholar]
- Brešar, B.; Henning, M.A.; Rall, D.F. Rainbow domination in graphs. Taiwan J. Math. 2008, 12, 213–225. [Google Scholar] [CrossRef]
- Chellali, M.; Haynes, T.; Hedetniemi, S. Bounds on weak Roman and 2-rainbow domination numbers. Discrete Appl. Math. 2014, 178, 27–32. [Google Scholar] [CrossRef]
- Šumenjak, T.; Rall, D.; Tepeh, A. Rainbow domination in the lexicographic product of graphs. Discrete Appl. Math. 2013, 161, 2133–2141. [Google Scholar] [CrossRef]
- Wu, Y.; Rad, N.J. Bounds on the 2-rainbow domination number of graphs. Graphs Combin. 2013, 29, 1125–1133. [Google Scholar] [CrossRef]
- Beeler, R.A.; Haynes, T.W.; Hedetniemi, S.T. Double Roman domination. Discrete Appl. Math. 2016, 211, 23–29. [Google Scholar] [CrossRef]
- Haynes, T.W.; Henning, M.A.; Volkmann, L. Graphs with large Italian domination number. Bull. Malays. Math. Sci. Soc. 2020, 43, 4273–4287. [Google Scholar] [CrossRef]
- Goddard, W.; Henning, M.A. Generalised Domination and Independence in Graphs. In Proceedings of the Twenty-Eighth Southeastern International Conference on Combinatorics, Graph Theory and Computing, Boca Raton, FL, USA, 4–7 March 1997; Volume 123, pp. 161–171. [Google Scholar]
- Pushpam, P.R.L.; Yokesh, D. Differentials in certain classes of graphs. Tamkang J. Math. 2010, 41, 129–138. [Google Scholar] [CrossRef]
- Mashburn, J.L.; Haynes, T.W.; Hedetniemi, S.M.; Hedetniemi, S.T.; Slater, P.J. Differentials in graphs. Util. Math. 2006, 69, 43–54. [Google Scholar]
- Cabrera Martínez, A.; Rodríguez-Velázquez, J.A. On the perfect differential of a graph. Quaest. Math. 2022, 45, 327–345. [Google Scholar] [CrossRef]
- Bermudo, S. On the differential and Roman domination number of a graph with minimum degree two. Discrete Appl. Math. 2017, 232, 64–72. [Google Scholar] [CrossRef]
- Bermudo, S.; Fernau, H.; Sigarreta, J.M. The differential and the Roman domination number of a graph. Appl. Anal. Discrete Math. 2014, 8, 155–171. [Google Scholar] [CrossRef]
- Bermudo, S.; Hernández-Gómez, J.C.; Rodríguez, J.M.; Sigarreta, J.M. Relations between the Differential and Parameters in Graphs. In Conference on Discrete Mathematics and Computer Science (Spanish); Electron. Notes Discrete Math.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 46, pp. 281–288. [Google Scholar] [CrossRef]
- Cabrera Martínez, A.; Rodríguez-Velázquez, J.A. From the strong differential to Italian domination in graphs. Mediterr. J. Math. 2021, 18, 228. [Google Scholar] [CrossRef]
- Fink, J.F. n-Domination in Graphs. In Proceedings of the Graph Theory with Applications to Algorithms and Computer Science; Wiley: Hoboken, NJ, USA, 1985; pp. 282–300. [Google Scholar]
- Goddard, W.; Henning, M.A.; McPillan, C.A. Semitotal domination in graphs. Util. Math. 2014, 94, 67–81. [Google Scholar]
- Klostermeyer, W.; MacGillivray, G. Roman, Italian, and 2-domination. J. Combin. Math. Combin. Comput. 2019, 108, 125–146. [Google Scholar]
- Gonzalez Yero, I.; Cabrera Martinez, A. A characterization of trees with equal Roman 2-domination and Roman domination numbers. Commun. Comb. Optim. 2019, 4, 95–107. [Google Scholar] [CrossRef]
- Alizadeh, F.; Maimani, H.; Majd, L.; Parsa, M. Roman {2}-domination in graphs and graph products. arXiv 2017, arXiv:1701.01416. [Google Scholar] [CrossRef]
- Li, Z.; Shao, Z.; Xu, J. Weak {2}-domination number of Cartesian products of cycles. J. Comb. Optim. 2018, 35, 75–85. [Google Scholar] [CrossRef]
- Stępień, Z.; Zwierzchowski, M. 2-rainbow domination number of Cartesian products: Cn□C3 and Cn□C5. J. Comb. Optim. 2014, 28, 748–755. [Google Scholar] [CrossRef]
- Gao, H.; Wang, P.; Liu, E.; Yang, Y. More results on Italian domination in Cn□Cm. Mathematics 2020, 8, 465. [Google Scholar] [CrossRef]
- Padamutham, C.; Palagiri, V.S.R. Complexity of Roman 2-domination and the double Roman domination in graphs. AKCE Int. J. Graphs Comb. 2020, 17, 1081–1086. [Google Scholar] [CrossRef]
- Elliot, K.; Randy, D. On a Vizing-type integer domination conjecture. Theory Appl. Graphs 2020, 7, 8. [Google Scholar] [CrossRef]
- Klavžar, S.; Henning, M.A.; Brešar, B. On integer domination in graphs and Vizing-like problems. Taiwan J. Math. 2006, 10, 1317–1328. [Google Scholar] [CrossRef]
- Hernández-Ortiz, R.; Montejano, L.P.; Rodríguez-Velázquez, J.A. Italian domination in rooted product graphs. Bull. Malays. Math. Sci. Soc. 2021, 44, 497–508. [Google Scholar] [CrossRef]
- Klavžar, S.; Milutinović, U. Graphs S(n, k) and a variant of the Tower of Hanoi problem. Czech. Math. J. 1997, 47, 95–104. [Google Scholar] [CrossRef]
- Klavžar, S.; Milutinović, U.; Petr, C. 1-perfect codes in Sierpiński graphs. Bull. Austral. Math. Soc. 2002, 66, 369–384. [Google Scholar] [CrossRef]
- Varghese, J.; Anu, V.; Aparna Lakshmanan, S. Italian domination and perfect Italian domination on Sierpinski graphs. arXiv 2020, arXiv:2009.09202. [Google Scholar] [CrossRef]
- Gravier, S.; Kovse, M.; Parreau, A. Generalized Sierpiński Graphs 1. Available online: https://api.semanticscholar.org/CorpusID:38210279 (accessed on 4 September 2024).
- Varghese, J.; Anu, V.; Aparna Lakshmanan, S. Domination parameters of generalized Sierpiński graphs. AKCE Int. J. Graphs Comb. 2024, 21, 4–10. [Google Scholar] [CrossRef]
- Nazari-Moghaddam, S. Italian domination number upon vertex and edge removal. Commun. Combin. Cryptogr. Comput. Sci. 2022, 2022, 7–10. [Google Scholar]
- Chen, H.; Lu, C. Roman {2}-domination problem in graphs. Discuss. Math. Graph Theory 2022, 42, 641–660. [Google Scholar] [CrossRef]
- Poureidi, A.; Rad, N.J. On the algorithmic complexity of Roman {2}-domination (Italian domination). Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 791–799. [Google Scholar] [CrossRef]
- Fernández, L.; Leoni, V. New complexity results on Roman {2}-domination. RAIRO Oper. Res. 2023, 57, 1905–1912. [Google Scholar] [CrossRef]
- Haynes, T.W.; Henning, M.A. Perfect Italian domination in trees. Discrete Appl. Math. 2019, 260, 164–177. [Google Scholar] [CrossRef]
- Lauri, J.; Mitillos, C. Perfect Italian domination on planar and regular graphs. Discrete Appl. Math. 2020, 285, 676–687. [Google Scholar] [CrossRef]
- Nazari-Moghaddam, S.; Chellali, M. A new upper bound for the perfect Italian domination number of a tree. Discuss. Math. Graph Theory 2022, 42, 1005–1022. [Google Scholar] [CrossRef]
- Henning, M.A.; Banerjee, S.; Pradhan, D. Perfect Italian domination in cographs. Appl. Math. Comput. 2021, 391, 125703. [Google Scholar] [CrossRef]
- Varghese, J.; Aparna Lakshmanan, S. Perfect Italian domination number of graphs. arXiv 2019, arXiv:1910.12260. [Google Scholar] [CrossRef]
- Pradhan, D.; Banerjee, S.; Liu, J.B. Perfect Italian domination in graphs: Complexity and algorithms. Discrete Appl. Math. 2022, 319, 271–295. [Google Scholar] [CrossRef]
- Ghasr, F.K.A. On a generalization of Roman domination with more legions. arXiv 2022, arXiv:2212.08935. [Google Scholar] [CrossRef]
- Cabrera García, S.; Cabrera Martínez, A.; Hernández Mira, F.A.; Yero, I.G. Total Roman {2}-domination in graphs. Quaest. Math. 2021, 44, 411–434. [Google Scholar] [CrossRef]
- Cockayne, E.J.; Dawes, R.; Hedetniemi, S.T. Total domination in graphs. Networks 1980, 10, 211–219. [Google Scholar] [CrossRef]
- Liu, C.H.; Chang, G.J. Roman domination on strongly chordal graphs. J. Comb. Optim. 2013, 26, 608–619. [Google Scholar] [CrossRef]
- Harary, F.; Haynes, T.W. Double domination in graphs. Ars Comb. 2000, 55, 201–213. [Google Scholar]
- Ahangar, H.A.; Henning, M.A.; Samodivkin, V.; Yero, I.G. Total Roman domination in graphs. Appl. Anal. Discrete Math. 2016, 10, 501–517. [Google Scholar] [CrossRef]
- Abdollahzadeh Ahangar, H.; Chellali, M.; Sheikholeslami, S.M.; Valenzuela-Tripodoro, J.C. Total Roman {2}-dominating functions in graphs. Discuss. Math. Graph Theory 2022, 42, 937–958. [Google Scholar] [CrossRef]
- Abdollahzadeh Ahangar, H.; Chellali, M.; Hajjari, M.; Sheikholeslami, S.M. Further progress on the total Roman {2}-domination number of graphs. Bull. Iranian Math. Soc. 2022, 48, 1111–1119. [Google Scholar] [CrossRef]
- Sheikholeslami, S.M.; Volkmann, L. Nordhaus-Gaddum type inequalities on the total Italian domination number in graphs. RAIRO Oper. Res. 2022, 56, 2235–2243. [Google Scholar] [CrossRef]
- Chakradhar, P.; Venkata Subba Reddy, P. Algorithmic aspects of total Roman {2}-domination in graphs. Commun. Comb. Optim. 2022, 7, 183–192. [Google Scholar] [CrossRef]
- Almulhim, A. Total perfect Roman domination. Symmetry 2023, 15, 1676. [Google Scholar] [CrossRef]
- Rahmouni, A.; Chellali, M. Independent Roman 2-domination in graphs. Discrete Appl. Math. 2018, 236, 408–414. [Google Scholar] [CrossRef]
- Wu, P.; Li, Z.; Shao, Z.; Sheikholeslami, S.M. Trees with equal Roman {2}-domination number and independent Roman {2}-domination number. RAIRO Oper. Res. 2019, 53, 389–400. [Google Scholar] [CrossRef]
- Chen, H.; Lu, C. A note on Roman {2}-domination problem in graphs. arXiv 2019, arXiv:1804.09338. [Google Scholar] [CrossRef]
- Poureidi, A.; Rad, N.J. Algorithmic aspects of the independent 2-rainbow domination number and independent Roman {2}-domination number. Discuss. Math. Graph Theory 2022, 42, 709–726. [Google Scholar] [CrossRef]
- Li, B.B.; Shang, W.P. Independent Roman {2}-domination in trees. Chin. Quart. J. Math. 2022, 37, 386–393. [Google Scholar] [CrossRef]
- Padamutham, C.; Palagiri, V.S.R. Complexity aspects of variants of independent Roman domination in graphs. Bull. Iran. Math. Soc. 2021, 47, 1715–1735. [Google Scholar] [CrossRef]
- Kosari, S.; Amjadi, J.; Khan, A.; Volkmann, L. Independent Italian bondage of graphs. Commun. Comb. Optim. 2023, 8, 649–664. [Google Scholar] [CrossRef]
- Hao, G.; Sheikholeslami, S.M.; Wei, S. Italian reinforcement number in graphs. IEEE Access 2019, 7, 184448–184456. [Google Scholar] [CrossRef]
- Kim, K. The Italian bondage and reinforcement numbers of digraphs. arXiv 2020, arXiv:2008.05140. [Google Scholar] [CrossRef]
- Xie, Z.; Hao, G.; Sheikholeslami, S.M.; Zeng, S. On the Italian reinforcement number of a digraph. AIMS Math. 2021, 6, 6490–6505. [Google Scholar] [CrossRef]
- Moradi, A.; Mojdeh Doost, A.; Sharifi, O. Roman 2-bondage number of a graph. Discuss. Math. Graph Theory 2020, 40, 255–268. [Google Scholar] [CrossRef]
- Kheibari, M.; Khoeilar, R.; Sheikholeslami, S.; Ahangar, H. Total Roman 2-reinforcement of graphs. J. Math. 2021, 2021, 5515250. [Google Scholar] [CrossRef]
- Samadi, B.; Alishahi, M.; Masoumi, I.; Mojdeh, D.A. Restrained Italian domination in graphs. RAIRO Oper. Res. 2021, 55, 319–332. [Google Scholar] [CrossRef]
- Kim, K. Restrained Italian domination in trees. Int. J. Comput. Math. Comput. Syst. Theory 2021, 6, 236–242. [Google Scholar] [CrossRef]
- Volkmann, L. Remarks on the restrained Italian domination number in graphs. Commun. Comb. Optim. 2023, 8, 183–191. [Google Scholar] [CrossRef]
- Ridha Abdulhasan, A.M.; Mojdeh, D.A. Further results on (total) restrained Italian domination. Discrete Math. Algorithms Appl. 2024, 16, 2350017. [Google Scholar] [CrossRef]
- Ebrahimi, N.; Amjadi, J.; Chellali, M.; Sheikholeslami, S.M. Restrained Italian reinforcement number in graphs. AKCE Int. J. Graphs Comb. 2023, 20, 227–234. [Google Scholar] [CrossRef]
- Ebrahimi, N.; Amjadi, J.; Chellali, M.; Sheikholeslami, S.M. Restrained Italian bondage number in graphs. Discrete Math. Algorithms Appl. 2023, 15, 2250119. [Google Scholar] [CrossRef]
- Dettlaff, M.; Lemańska, M.; Rodríguez-Velázquez, J.A. Secure Italian domination in graphs. J. Comb. Optim. 2021, 41, 56–72. [Google Scholar] [CrossRef]
- Martínez, A.; Estrada-Moreno, A.; Rodríguez-Velázquez, J. Secure w-domination in graphs. Symmetry 2020, 12, 1948. [Google Scholar] [CrossRef]
- Cockayne, E.; Grobler, P.; Grundlingh, W.; Munganga, J.; Van Vuuren, J. Protection of a graph. Util. Math. 2005, 67, 19–32. [Google Scholar]
- Boumediene Merouane, H.; Chellali, M. On secure domination in graphs. Inf. Process. Lett. 2015, 115, 786–790. [Google Scholar] [CrossRef]
- Burger, A.; Van Vuuren, J.; Henning, M. Vertex covers and secure domination in graphs. Quaest. Math. 2008, 31, 163–171. [Google Scholar] [CrossRef]
- William, F.K.; Christina, M.M. Secure domination and secure total domination in graphs. Discuss. Math. Graph Theory 2008, 28, 267–284. [Google Scholar]
- Valveny, M.; Rodriguez-Velazquez, J.A. Protection of graphs with emphasis on Cartesian product graphs. arXiv 2020, arXiv:2008.00225. [Google Scholar] [CrossRef]
- Cabrera Martínez, A.; Estrada-Moreno, A.; Rodriguez-Velazquez, J.A. From the quasi-total strong differential to quasi-total Italian domination in graphs. Symmetry 2021, 13, 1036. [Google Scholar] [CrossRef]
- Karamzadeh, A.; Maimani, H.R.; Zaeembashi, A. On the signed Italian domination of graphs. Comput. Sci. J. Moldova 2019, 27, 204–229. [Google Scholar]
- Abdollahzadeh Ahangar, H.; Chellali, M.; Sheikholeslami, S.M. Signed double Roman domination in graphs. Discrete Appl. Math. 2019, 257, 1–11. [Google Scholar] [CrossRef]
- Almulhim, A. Signed double Italian domination. AIMS Math. 2023, 8, 30895–30909. [Google Scholar] [CrossRef]
- Volkmann, L. Signed total Italian domination in digraphs. Commun. Comb. Optim. 2023, 8, 457–466. [Google Scholar] [CrossRef]
- Cabrera Martínez, A. Starred Italian domination in graphs. Contrib. Discrete Math. 2021, 16, 139–152. [Google Scholar] [CrossRef]
- Volkmann, L. The Roman {2}-domatic number of graphs. Discrete Appl. Math. 2019, 258, 235–241. [Google Scholar] [CrossRef]
- Volkmann, L. The Italian domatic number of a digraph. Commun. Comb. Optim. 2019, 4, 61–70. [Google Scholar]
- Lyle, J. Regular graphs with large Italian domatic number. Commun. Comb. Optim. 2022, 7, 257–271. [Google Scholar]
- Volkmann, L. Restrained Roman and restrained Italian domatic numbers of graphs. Discrete Appl. Math. 2022, 322, 153–159. [Google Scholar] [CrossRef]
- Khodkar, A.; Mojdeh, D.A.; Samadi, B.; Yero, I.G. Covering Italian domination in graphs. Discrete Appl. Math. 2021, 304, 324–331. [Google Scholar] [CrossRef]
- Hao, G.; Hu, K.; Wei, S.; Xu, Z. Global Italian domination in graphs. Quaest. Math. 2019, 42, 1101–1115. [Google Scholar] [CrossRef]
- Fan, W.; Ye, A.; Miao, F.; Shao, Z.; Samodivkin, V.; Sheikholeslami, S.M. Outer-independent Italian domination in graphs. IEEE Access 2019, 7, 22756–22762. [Google Scholar] [CrossRef]
- Domke, G.S.; Hedetniemi, S.T.; Laskar, R.C.; Fricke, G. Relationships between Integer and Fractional Parameters of Graphs. In Graph Theory, Combinatorics, and Applications, Volume 1 (Kalamazoo, MI, 1988); Wiley-Interscience Publisher: New York, NY, USA, 1991; pp. 371–387. [Google Scholar]
- Cabrera Martínez, A.; Estrada-Moreno, A.; Rodriguez-Velazquez, J.A. From Italian domination in lexicographic product graphs to w-domination in graphs. Ars Math. Contemp. 2021, 22. [Google Scholar] [CrossRef]
- Bonomo, F.; Brešar, B.; Grippo, L.N.; Milanič, M.; Safe, M.D. Domination parameters with number 2: Interrelations and algorithmic consequences. Discrete Appl. Math. 2018, 235, 23–50. [Google Scholar] [CrossRef]
- Cabrera-Martínez, A.; Peiró, A.C. On the {2}-domination number of graphs. AIMS Math. 2022, 7, 10731–10743. [Google Scholar] [CrossRef]
- Cabrera-Martínez, A.; Montejano, L.P.; Rodríguez-Velázquez, J.A. From w-domination in graphs to domination parameters in lexicographic product graphs. Bull. Malays. Math. Sci. Soc. 2023, 46, 109. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almulhim, A.; Al Subaiei, B.; Mondal, S.R. Survey on Roman {2}-Domination. Mathematics 2024, 12, 2771. https://doi.org/10.3390/math12172771
Almulhim A, Al Subaiei B, Mondal SR. Survey on Roman {2}-Domination. Mathematics. 2024; 12(17):2771. https://doi.org/10.3390/math12172771
Chicago/Turabian StyleAlmulhim, Ahlam, Bana Al Subaiei, and Saiful Rahman Mondal. 2024. "Survey on Roman {2}-Domination" Mathematics 12, no. 17: 2771. https://doi.org/10.3390/math12172771
APA StyleAlmulhim, A., Al Subaiei, B., & Mondal, S. R. (2024). Survey on Roman {2}-Domination. Mathematics, 12(17), 2771. https://doi.org/10.3390/math12172771