A Novel Underwater Wireless Optical Communication Optical Receiver Decision Unit Strategy Based on a Convolutional Neural Network
Abstract
:1. Introduction
2. Related Studies—A Brief Review
3. UWOC System Model
3.1. The Transmitter Unit
3.2. UWOC Propagation Channel
3.3. The Receiver Unit
3.4. Digital Signal Evaluation Cycle from Optical to Electronic—A Mathematical Viewpoint
4. BER Computational Strategies for Decision Unit—Background Tutorial
4.1. BER Estimation Schemes—A Brief Review
4.2. Monte Carlo (MC) Method Simulation
4.3. Importance Sampling Scheme
4.4. Tail Extrapolation Scheme
4.5. The Method of Quasi-analytical Estimation
- One handles the transmitted signal rf(t) in Equation (4);
- The other handles the noise component rth(t).
4.6. Estimating BER Based on the Log-Likelihood Ratio
- The first estimate of BER given by Equation (12a) may not be as efficient as the second BER estimate given by Equation (12b) since gA(y) is usually Gaussian and smooth.
- The second estimator is extra complicated to execute because an estimate of gA(y) ought to be computed (for instance, utilising a histogram) prior to the integral.
- Both methods are sensitive to channel noise variance as the LLR distribution vigorously relies upon the accuracy of the SNR estimate. We should note that the earlier estimators implicitly presume that the SNR is well-known to the decoder.
5. CNN Model Solution Framework Foundations
5.1. Receiver Performance Indicators
5.2. Test Data
- DGFs with distances of 5.47 m and 45.45 m for harbour and coastal waters, respectively, and (20°, 180°) field of view (FOV).
- WDGFs and CEAPFs with distances of 10.93 m and 45.45 m for harbour and coastal waters, respectively, and 20° FOV.
- BP with 5 m and 10 m distances for harbour and coastal waters, respectively, and 180° FOV.
- Loading the images’ names and SNRs from the database.
- Converting the data into a ‘pandas’ data frame.
- Shuffling the data frame.
- Using TensorFlow library on Python, we conducted the following:
- Loaded the eye diagram images based on their names and normalised them using max normalisation (dividing each pixel by 255).
- Split the dataset into training (70%) and validation (30%).
- Converted the colour mode from RGB into grayscale.
- Used the images’ original size instead of resizing them to keep the resolution high.
5.3. Machine Learning—Neural Networks (NNs)
6. CNN Model Architecture, Design, and Implementation
6.1. Model Solution Architecture and Design
6.2. Model Dataset
6.3. CNN Algorithm
- The dimensions of the input eye diagram images are 2366 × 3125 pixels, with a resolution of 600 dpi.
- The network includes convolutional layers with a filter size of 10 and a stride of 1. The filters range from 16 to 64, increasing by four at each step. There is no activation function applied.
- There are three non-overlapping max-pooling layers with a size and stride 3.
- Flattened values refer to the input values that will be fed into the NN.
- This study refers to the hidden layer as FC and uses the ReLU activation function to reduce the CNN calculations by setting negative values to zero.
- The ultimate output of the CNN is the prediction of the signal-to-noise ratio (SNR) using a linear activation function, which is appropriate for regression tasks.
6.4. SNR Prediction
7. Results and Discussion
8. Conclusions
9. Future Studies
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Ref. | Year | Type of Modulation | Data Rate | Optical Fibre/UWOC | Distance | ML Tec. | Sim./Exp. | Train: Test | Input | Hidden Layers | Hidden Neurons | SNR Range (dB) | BER | Performance |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[25] | 2017 | PDM-64QAM | 32 Gbaud | Fibre | 250 km | NN, regression | Exp. To generate an eye diagram | 1664:832 | variance from the eye diagram | 1 | 3 | 4–30 | ------- | mean estimation error range from 0.2–1.2 dB |
[58] | 2009 | NRZ-OOK RZ-DPSK | 10 Gb/s 40 Gb/s | Fibre | --------- | ANN | Sim. | --------------- | Q-factor, closure, jitter, crossing-amplitude from eye diagram | 1 | 12 | 16–32 | ------- | correlation coefficient = 0.91 (@10G) correlation coefficient = 0.96 (@40G) |
[26] | 2009 | RZ-OOK RZ-DPSK | 40 Gb/s | Fibre | --------- | ANN | Sim. | 135:32 | Q-factor, closure, jitter, Crosspoint, mean, standard deviation from eye diagram | 1 | 12 | 16–32 | ------- | |
[116] | 2021 | NRZ-OOK | 10 Gb/s | Fibre | 100 km | ANN | Sim | 145: 41 | factor, noise power, eye amplitude, eye height, eye closure, eye-opening factor, extinction ratio at min BER, and RMS jitter | 1 | 5 | 15–30 | ------- | |
[8] | 2009 | NRZ- DPSK | 40 Gb/s | Fibre | 50 km | NO | ------------- | 500–1500 for training | six features | ------- | ------- | 25, 35 | ------- | ------------------ |
[68] | ------ | NRZ-OOK | 1.25 Gbps | UWOC | 1.5–6 m | NO | Exp | --------------- | --------------- | ------- | ------- | ----------- | 1 × 10−7 | ------------------ |
[59] | 2012 | NRZ, RZ and QPSK | 40 Gb/s | Fibre | --------- | ANN | Sim | --------------- | 24 features from the Eye diagram | 1 | 10 | 10–30 | ------- | |
Our study | 2024 | NRZ-OOK | 2 Gb/s | UWOC | 12 m | CNN | Sim | 404:172 | Eye diagram | 1 | 80–320 | (−2.42–9.11) | 0.0022–0.2247 | MAE = 0.291 RMSE = 0.387 |
Ref. | [24,60] | [61] | Our Work |
---|---|---|---|
ML technique | CNN | CNN | CNN |
Input data | Eye diagrams | Eye-opening, height, width, closure. | Eye diagrams |
Images format | jpg | No | jpg |
Approach | Classification | classification | Regression |
No. of convolutional and pooling layers | 2 | 3 | 5 |
No. of filters | C1 = 6 C2 = 12 | C1 = 60 C2 = 80 C3 = 180 | Unified for all convolutional layers, and it ranges from 16 to 64 |
Filter size | 5 | 3 | 10 |
Pooling size | 2 | 2 | 3 |
activation functions | Sigmoid in the whole CNN | ReLU for each convolutional layer and soft-max | ReLU for hidden layer Linear for output layer |
No. of hidden layers | 0 | 2 | 1 |
No. of elements of the fully connected feature map | 192 | FC1=360 FC2 =120 | Range from 80 to 320 According to no. of filters |
Dropout | No | yes | 45% |
Backpropagation | Yes | Yes | Yes |
No. of output nodes | 20 | No | 1 |
Output | 4 modulation formats 16 SNR | modulation formats, OSNR, ROF, and IQ skew | SNR |
No. of epochs | 35 | No | 250 |
Modulation format | RZ-OOK, NRZ-OOK, RZ-DPSK, and 4PAM | QAM and QPSK | NRZ-OOK |
Data rate | 25Gbaud | 32 Gbaud | 2 Gb/s |
Collecting eye diagrams way | Simulating signals and displaying eye diagrams using the oscilloscope | Experimental | Simulating everything using Python |
Colour mode | Coloured converted into grayscale | Coloured | Black and white in RGB convert to grayscale |
Original image size | 900 × 1200 | 224 × 224 | 2366 × 3125 |
Resized image | 28 × 28 | No | No |
Resolution | Low | Low | High (600 dpi) |
No. of models | 1 | 2 | 13 |
Prediction time | 0.46 s | No | Range from 0.17 to 0.20 s |
SNR range | (10–25) dB | (15 to 40) dB | (−2.42–9.11) dB |
BER range | No | No | 0.0022–0.2247 |
Total no. of images | 6400 | 1170 | 576 |
Performance | 100% accuracy | 99.57% accuracy | MAE = 0.29–0.52 RMSE = 0.39–0.73 |
Learning curves existence | No | No | Yes |
UWOC/ Fibre | Fibre | Fibre | UWOC |
Year | 2017 | 2019 | 2024 |
References
- Aldin, M.B.; Alkareem, R.A.; Ali, M.A. Transmission of 10 Gb/s For Underwater Optical Wireless Communication System. J. Opt. 2024, 1–12. [Google Scholar] [CrossRef]
- Tian, R.; Wang, T.; Shen, X.; Zhu, R.; Jiang, L.; Lu, Y.; Lu, H.; Song, Y.; Zhang, P. 108 m Underwater Wireless Optical Communication Using a 490 nm Blue VECSEL and an AOM. Sensors 2024, 24, 2609. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.; Lai, M. A Review on Electromagnetic, Acoustic, and New Emerging Technologies for Submarine Communication. IEEE Access 2024, 12, 12110–12125. [Google Scholar] [CrossRef]
- Álvarez-Roa, C.; Álvarez-Roa, M.; Raddo, T.R.; Jurado-Navas, A.; Castillo-Vázquez, M. Cooperative Terrestrial–Underwater FSO System: Design and Performance Analysis. Photonics 2024, 11, 58. [Google Scholar] [CrossRef]
- Ramley, I.F.E.; AlZhrani, S.M.; Bedaiwi, N.M.; Al-Hadeethi, Y.; Barasheed, A.Z. Simple Moment Generating Function Optimisation Technique to Design Optimum Electronic Filter for Underwater Wireless Optical Communication Receiver. Mathematics 2024, 12, 861. [Google Scholar] [CrossRef]
- Proakis, J.G.; Salehi, M. Digital Communications; McGraw-Hill: New York, NY, USA, 2008. [Google Scholar]
- Sklar, B. Digital Communications: Fundamentals and Applications; Pearson: London, UK, 2021. [Google Scholar]
- Anderson, T.B.; Kowalczyk, A.; Clarke, K.; Dods, S.D.; Hewitt, D.; Li, J.C. Multi impairment monitoring for optical networks. J. Light. Technol. 2009, 27, 3729–3736. [Google Scholar] [CrossRef]
- Khan, F.N.; Zhou, Y.; Lau, A.T.; Lu, C. Modulation format identification in heterogeneous fiber-optic networks using artificial neural networks. Opt. Express 2012, 20, 12422–12431. [Google Scholar] [CrossRef]
- Khan, F.N.; Shen, T.S.R.; Zhou, Y.; Lau, A.T.; Lu, C. Optical performance monitoring using artificial neural networks trained with empirical moments of asynchronously sampled signal amplitudes. IEEE Photonics Technol. Lett. 2012, 24, 982–984. [Google Scholar] [CrossRef]
- Shen, T.S.R.; Sui, Q.; Lau, A.T. OSNR monitoring for PM-QPSK systems with large inline chromatic dispersion using artificial neural network technique. IEEE Photonics Technol. Lett. 2012, 24, 1564–1567. [Google Scholar] [CrossRef]
- Tan, M.C.; Khan, F.N.; Al-Arashi, W.H.; Zhou, Y.; Lau, A.T. Simultaneous optical performance monitoring and modulation format/bit-rate identification using principal component analysis. J. Opt. Commun. Netw. 2014, 6, 441–448. [Google Scholar] [CrossRef]
- Marsland, S. Machine Learning: An Algorithmic Perspective; Chapman and Hall/CRC: Boca Raton, FL, USA, 2011. [Google Scholar]
- Khan, F.N.; Fan, Q.; Lu, C.; Lau, A.T. An optical communication’s perspective on machine learning and its applications. J. Light. Technol. 2019, 37, 493–516. [Google Scholar] [CrossRef]
- Musumeci, F.; Rottondi, C.; Nag, A.; Macaluso, I.; Zibar, D.; Ruffini, M.; Tornatore, M. An overview on application of machine learning techniques in optical networks. IEEE Commun. Surv. Tutor. 2018, 21, 1383–1408. [Google Scholar] [CrossRef]
- Li, P.; Yi, L.; Xue, L.; Hu, W. 56 Gbps IM/DD PON based on 10G-class optical devices with 29 dB loss budget enabled by machine learning. In Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 11–15 March 2018; pp. 1–3. [Google Scholar]
- Liao, T.; Xue, L.; Hu, W.; Yi, L. Unsupervised learning for neural network-based blind equalization. IEEE Photonics Technol. Lett. 2020, 32, 569–572. [Google Scholar] [CrossRef]
- Zha, X.; Peng, H.; Qin, X.; Li, G.; Yang, S. A deep learning framework for signal detection and modulation classification. Sensors 2019, 19, 4042. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, M.; Li, Z.; Cui, Y.; Liu, J.; Yang, Y.; Wang, H. Nonlinear decision boundary created by a machine learning-based classifier to mitigate nonlinear phase noise. In Proceedings of the 2015 European Conference on Optical Communication (ECOC), Valencia, Spain, 27 September–1 October 2015; pp. 1–3. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, W.; Gao, M.; Shen, G. K-means-clustering-based fiber nonlinearity equalization techniques for 64-QAM coherent optical communication system. Opt. Express 2017, 25, 27570–27580. [Google Scholar] [CrossRef]
- Zhang, L.; Pang, X.; Ozolins, O.; Udalcovs, A.; Popov, S.; Xiao, S.; Hu, W.; Chen, J. Spectrally efficient digitized radio-over-fiber system with k-means clustering-based multidimensional quantization. Opt. Lett. 2018, 43, 1546–1549. [Google Scholar] [CrossRef]
- Khan, F.N.; Yu, Y.; Tan, M.C.; Al-Arashi, W.H.; Yu, C.; Lau, A.P.T.; Lu, C. Experimental demonstration of joint OSNR monitoring and modulation format identification using asynchronous single channel sampling. Opt. Express 2015, 23, 30337–30346. [Google Scholar] [CrossRef]
- Zibar, D.; Gonzalez, N.G.; de Oliveira, J.C.R.F.; Monroy, I.T.; de Carvalho, L.H.H.; Piels, M.; Doberstein, A.; Diniz, J.; Nebendahl, B.; Franciscangelis, C.; et al. Application of machine learning techniques for amplitude and phase noise characterization. J. Light. Technol. 2015, 33, 1333–1343. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, M.; Li, Z.; Li, J.; Fu, M.; Cui, Y.; Chen, X. Modulation format recognition and OSNR estimation using CNN-based deep learning. IEEE Photonics Technol. Lett. 2017, 29, 1667–1670. [Google Scholar] [CrossRef]
- Thrane, J.; Wass, J.; Piels, M.; Diniz, J.C.M.; Jones, R.; Zibar, D. Machine learning techniques for optical performance monitoring from directly detected PDM-QAM signals. J. Light. Technol. 2016, 35, 868–875. [Google Scholar] [CrossRef]
- Wu, X.; Jargon, J.A.; Skoog, R.A.; Paraschis, L.; Willner, A.E. Applications of Artificial Neural Networks in Optical Performance Monitoring. J. Light. Technol. 2009, 27, 3580–3589. [Google Scholar]
- Jargon, J.A.; Wu, X.; Choi, H.Y.; Chung, Y.C.; Willner, A.E. Optical performance monitoring of QPSK data channels by use of neural networks trained with parameters derived from asynchronous constellation diagrams. Opt. Express 2010, 18, 4931–4938. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.S.R.; Meng, K.; Lau, A.T.; Dong, Z.Y. Optical performance monitoring using artificial neural network trained with asynchronous amplitude histograms. IEEE Photonics Technol. Lett. 2010, 22, 1665–1667. [Google Scholar] [CrossRef]
- Zibar, D.; Thrane, J.; Wass, J.; Jones, R.; Piels, M.; Schaeffer, C. Machine learning techniques applied to system characterization and equalization. In Proceedings of the 2016 Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, CA, USA, 20–24 March 2016; pp. 1–3. [Google Scholar]
- Reza, A.G.; Rhee, J.-K.K. Blind nonlinear equalizer using artificial neural networks for PAM-4 signal transmissions with DMLs. Opt. Fiber Technol. 2021, 64, 102582. [Google Scholar] [CrossRef]
- Chan, C.C.K. Optical Performance Monitoring: Advanced Techniques for Next-Generation Photonic Networks; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Hauske, F.N.; Kuschnerov, M.; Spinnler, B.; Lankl, B. Optical performance monitoring in digital coherent receivers. J. Light. Technol. 2009, 27, 3623–3631. [Google Scholar] [CrossRef]
- Geyer, J.C.; Fludger, C.R.S.; Duthel, T.; Schulien, C.; Schmauss, B. Performance monitoring using coherent receivers. In Proceedings of the 2009 Conference on Optical Fiber Communication, San Diego, CA, USA, 22–26 March 2009. [Google Scholar] [CrossRef]
- Szafraniec, B.; Marshall, T.S.; Nebendahl, B. Performance monitoring and measurement techniques for coherent optical systems. J. Light. Technol. 2012, 31, 648–663. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, X.; Yang, T.; Wang, L.; Wang, D.; Zhang, Z.; Shi, S. Low-complexity fiber nonlinearity impairments compensation enabled by simple recurrent neural network with time memory. IEEE Access 2020, 8, 160995–161004. [Google Scholar] [CrossRef]
- Saif, W.S.; Ragheb, A.M.; Nebendahl, B.; Alshawi, T.; Marey, M.; Alshebeili, S.A. Machine learning-based optical performance monitoring for super-channel optical networks. Photonics 2022, 9, 299. [Google Scholar] [CrossRef]
- Honkala, M.; Korpi, D.; Huttunen, J.M.J. DeepRx: Fully convolutional deep learning receiver. IEEE Trans. Wirel. Commun. 2021, 20, 3925–3940. [Google Scholar] [CrossRef]
- Skoog, R.A.; Banwell, T.C.; Gannett, J.W.; Habiby, S.F.; Pang, M.; Rauch, M.E.; Toliver, P. Automatic identification of impairments using support vector machine pattern classification on eye diagrams. IEEE Photonics Technol. Lett. 2006, 18, 2398–2400. [Google Scholar] [CrossRef]
- Ziauddin, F. Localization Through Optical Wireless Communication in Underwater by Using Machine Learning Algorithms. J. Glob. Res. Comput. Sci. 2024, 15, 1. [Google Scholar]
- Fan, X.; Xie, Y.; Ren, F.; Zhang, Y.; Huang, X.; Chen, W.; Zhangsun, T.; Wang, J. Joint optical performance monitoring and modulation format/bit-rate identification by CNN-based multi-task learning. IEEE Photonics J. 2018, 10, 1–12. [Google Scholar] [CrossRef]
- Jargon, J.A.; Wu, X.; Willner, A.E. Optical performance monitoring by use of artificial neural networks trained with parameters derived from delay-tap asynchronous sampling. In Proceedings of the 2009 Conference on Optical Fiber Communication, San Diego, CA, USA, 22–26 March 2009; pp. 1–3. [Google Scholar] [CrossRef]
- Wu, X.; Jargon, J.A.; Paraschis, L.; Willner, A.E. ANN-based optical performance monitoring of QPSK signals using parameters derived from balanced-detected asynchronous diagrams. IEEE Photonics Technol. Lett. 2010, 23, 248–250. [Google Scholar] [CrossRef]
- Dods, S.D.; Anderson, T.B. Optical performance monitoring technique using delay tap asynchronous waveform sampling. In Proceedings of the Optical Fiber Communication Conference, Anaheim, CA, USA, 5–10 March 2006; p. OThP5. [Google Scholar]
- Chen, H.; Poon, A.W.; Cao, X.-R. Transparent monitoring of rise time using asynchronous amplitude histograms in optical transmission systems. J. Light. Technol. 2004, 22, 1661. [Google Scholar] [CrossRef]
- Dong, Z.; Khan, F.N.; Sui, Q.; Zhong, K.; Lu, C.; Lau, A.T. Optical performance monitoring: A review of current and future technologies. J. Light. Technol. 2016, 34, 525–543. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, W.; Fu, S.; Tang, M.; Liu, D. Transfer learning simplified multi-task deep neural network for PDM-64QAM optical performance monitoring. Opt. Express 2020, 28, 7607–7617. [Google Scholar] [CrossRef]
- Wan, Z.; Yu, Z.; Shu, L.; Zhao, Y.; Zhang, H.; Xu, K. Intelligent optical performance monitor using multi-task learning based artificial neural network. Opt. Express 2019, 27, 11281–11291. [Google Scholar] [CrossRef]
- Khan, F.N.; Zhong, K.; Zhou, X.; Al-Arashi, W.H.; Yu, C.; Lu, C.; Lau, A.P.T. Joint OSNR monitoring and modulation format identification in digital coherent receivers using deep neural networks. Opt. Express 2017, 25, 17767–17776. [Google Scholar] [CrossRef]
- Xia, L.; Zhang, J.; Hu, S.; Zhu, M.; Song, Y.; Qiu, K. Transfer learning assisted deep neural network for OSNR estimation. Opt. Express 2019, 27, 19398–19406. [Google Scholar] [CrossRef]
- Kashi, A.S.; Zhuge, Q.; Cartledge, J.; Borowiec, A.; Charlton, D.; Laperle, C.; O’Sullivan, M. Artificial neural networks for fiber nonlinear noise estimation. In Proceedings of the 2017 Asia Communications and Photonics Conference, Guangzhou, China, 10–13 November 2017; pp. 1–3. [Google Scholar]
- Wang, D.; Zhang, M.; Li, J.; Li, Z.; Li, J.; Song, C.; Chen, X. Intelligent constellation diagram analyzer using convolutional neural network-based deep learning. Opt. Express 2017, 25, 17150–17166. [Google Scholar] [CrossRef]
- Cho, H.J. Deep Learning Based Optical Performance Monitoring for Digital Coherent Optical Receivers. Ph.D Thesis, Georgia Institute of Technology, College of Engineering, Atlanta, GA, USA, 2021. Available online: http://hdl.handle.net/1853/66065 (accessed on 17 July 2024).
- Derickson, D. Fiber optic test and measurement. In Fiber Optic Test and Measurement/Edited by Dennis Derickson; Prentice Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Jargon, J.A.; Wang, C.M.J.; Hale, D. A robust algorithm for eye-diagram analysis. J. Light. Technol. 2008, 26, 3592–3600. [Google Scholar] [CrossRef]
- Rajbhandari, S.; Faith, J.; Ghassemlooy, Z.; Angelova, M. Comparative study of classifiers to mitigate intersymbol interference in diffuse indoor optical wireless communication links. Optik 2013, 124, 4192–4196. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, A.; Guo, P.; He, P. OSNR and nonlinear noise power estimation for optical fiber communication systems using LSTM based deep learning technique. Opt. Express 2018, 26, 21346–21357. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Jiang, H.; Liang, G.; Zhan, Q.; Huang, S.; Wang, D.; Di, H.; Li, Z. OSNR monitoring based on a low-bandwidth coherent receiver and LSTM classifier. Opt. Express 2021, 29, 1566–1577. [Google Scholar] [CrossRef]
- Jargon, J.A.; Wu, X.; Willner, A.E. Optical performance monitoring using artificial neural networks trained with eye-diagram parameters. IEEE Photonics Technol. Lett. 2008, 21, 54–56. [Google Scholar] [CrossRef]
- Ribeiro, V.; Costa, L.; Lima, M.; Teixeira, A.L.J. Optical performance monitoring using the novel parametric asynchronous eye diagram. Opt. Express 2012, 20, 9851–9861. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, M.; Li, Z.; Li, J.; Song, C.; Li, J.; Wang, M. Convolutional neural network-based deep learning for intelligent OSNR estimation on eye diagrams. In Proceedings of the 2017 European Conference on Optical Communication (ECOC), Gothenburg, Sweden, 17–21 September 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, Z.; Yue, Y.; Ren, Y.; Wang, Z.; Liu, B.; Zhang, H.; Li, S.-A.; Fang, Y.; Huang, H.; et al. Eye diagram measurement-based joint modulation format, OSNR, ROF, and skew monitoring of coherent channel using deep learning. J. Light. Technol. 2019, 37, 5907–5913. [Google Scholar] [CrossRef]
- Al-Zhrani, S.; Bedaiwi, N.M.; El-Ramli, I.F.; Barasheed, A.Z.; Abduldaiem, A.; Al-Hadeethi, Y.; Umar, A. Underwater Optical Communications: A Brief Overview and Recent Developments. Eng. Sci. 2021, 16, 146–186. [Google Scholar] [CrossRef]
- Oubei, H.M.; Shen, C.; Kammoun, A.; Zedini, E.; Park, K.-H.; Sun, X.; Liu, G.; Kang, C.H.; Ng, T.K.; Alouini, M.-S.; et al. Light based underwater wireless communications. Jpn. J. Appl. Phys. 2018, 57, 08PA06. [Google Scholar] [CrossRef]
- Petzold, T.J. Volume Scattering Functions for Selected Ocean Waters; Scripps Institution of Oceanography La Jolla Ca Visibility Lab: La Jolla, CA, USA, 1972. [Google Scholar]
- Singh, M.; Singh, M.L.; Singh, G.; Kaur, H.; Kaur, S. Modeling and performance evaluation of underwater wireless optical communication system in the presence of different sized air bubbles. Opt. Quantum Electron. 2020, 52, 1–15. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, Y.; Tong, Z.; Yang, X.; Zhang, Y.; Zhang, C.; Xu, J. Omnidirectional optical communication system designed for underwater swarm robotics. Opt. Express 2023, 31, 18630–18644. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Chen, X.; Zhang, Z.; Song, G.; Lin, J.; Xu, J. Experimental verification of diffused laser beam-based optical wireless communication through air and water channels. Opt. Commun. 2021, 495, 127079. [Google Scholar] [CrossRef]
- Li, D.-C.; Chen, C.-C.; Liaw, S.-K.; Afifah, S.; Sung, J.-Y.; Yeh, C.-H. Performance Evaluation of Underwater Wireless Optical Communication System by Varying the Environmental Parameters. Photonics 2021, 8, 74. [Google Scholar] [CrossRef]
- Loo, J.; Mauri, J.L.; Ortiz, J.H. Mobile Ad Hoc Networks: Current Status and Future Trends; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Sun, X.; Kang, C.H.; Kong, M.; Alkhazragi, O.; Guo, Y.; Ouhssain, M.; Weng, Y.; Jones, B.H.; Ng, T.K.; Ooi, B.S. A Review on Practical Considerations and Solutions in Underwater Wireless Optical Communication. J. Light. Technol. 2020, 38, 421–431. [Google Scholar] [CrossRef]
- Geldard, C.T.; Thompson, J.; Popoola, W.O. An Overview of Underwater Optical Wireless Channel Modelling Techniques: (Invited Paper). In Proceedings of the 2019 International Symposium on Electronics and Smart Devices (ISESD), Badung, Indonesia, 8–9 October 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Johnson, L.; Green, R.; Leeson, M. A survey of channel models for underwater optical wireless communication. In Proceedings of the 2013 2nd International Workshop on Optical Wireless Communications (IWOW), Newcastle Upon Tyne, UK, 21 October 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Al-Kinani, A.; Wang, C.; Zhou, L.; Zhang, W. Optical Wireless Communication Channel Measurements and Models. IEEE Commun. Surv. Tutor. 2018, 20, 1939–1962. [Google Scholar] [CrossRef]
- Tang, S.; Dong, Y.; Zhang, X. Impulse response modeling for underwater wireless optical communication links. IEEE Trans. Commun. 2013, 62, 226–234. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, H.; Zhang, X. On impulse response modeling for underwater wireless optical MIMO links. In Proceedings of the 2014 IEEE/CIC International Conference on Communications in China (ICCC), Shanghai, China, 13–15 October 2014; pp. 151–155. [Google Scholar] [CrossRef]
- Li, Y.; Leeson, M.S.; Li, X. Impulse response modeling for underwater optical wireless channels. Appl. Opt. 2018, 57, 4815–4823. [Google Scholar] [CrossRef]
- Boluda-Ruiz, R.; Rico-Pinazo, P.; Castillo-Vázquez, B.; García-Zambrana, A.; Qaraqe, K. Impulse response modeling of underwater optical scattering channels for wireless communication. IEEE Photonics J. 2020, 12, 1–14. [Google Scholar] [CrossRef]
- Kodama, T.; Sanusi, M.A.B.A.; Kobori, F.; Kimura, T.; Inoue, Y.; Jinno, M. Comprehensive Analysis of Time-Domain Hybrid PAM for Data-Rate and Distance Adaptive UWOC System. IEEE Access 2021, 9, 57064–57074. [Google Scholar] [CrossRef]
- Kaushal, H.; Kaddoum, G. Underwater optical wireless communication. IEEE Access 2016, 4, 1518–1547. [Google Scholar] [CrossRef]
- Khalighi, M.A.; Uysal, M. Survey on free space optical communication: A communication theory perspective. IEEE Commun. Surv. Tutor. 2014, 16, 2231–2258. [Google Scholar] [CrossRef]
- Agrawal, G.P. Fiber-Optic Communication Systems; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Zhu, S.; Chen, X.; Liu, X.; Zhang, G.; Tian, P. Recent progress in and perspectives of underwater wireless optical communication. Prog. Quantum Electron. 2020, 73, 100274. [Google Scholar] [CrossRef]
- Ghassemlooy, Z.; Popoola, W.; Rajbhandari, S. Optical Wireless Communications: System and Channel Modelling with Matlab®; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Kharraz, O.; Forsyth, D. Performance comparisons between PIN and APD photodetectors for use in optical communication systems. Optik 2013, 124, 1493–1498. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, J.; Liu, Y.; Zhu, N. High-speed photodetectors in optical communication system. J. Semicond. 2017, 38, 121001. [Google Scholar] [CrossRef]
- Farr, N.; Chave, A.; Freitag, L.; Preisig, J.; White, S.; Yoerger, D.; Sonnichsen, F. Optical Modem Technology for Seafloor Observatories. In Proceedings of the OCEANS 2006, Boston, MA, USA, 18–21 September 2006; pp. 1–6. [Google Scholar] [CrossRef]
- Lee, H.-K.; Moon, J.-H.; Mun, S.-G.; Choi, K.-M.; Lee, C.-H. Decision threshold control method for the optical receiver of a WDM-PON. J. Opt. Commun. Netw. 2010, 2, 381–388. [Google Scholar] [CrossRef]
- Palermo, S. CMOS Transceiver Circuits for Optical Interconnects. In Encyclopedia of Modern Optics, 2nd ed.; Guenther, B.D., Steel, D.G., Eds.; Elsevier: Oxford, UK, 2018; pp. 254–263. [Google Scholar]
- Shieh, W.; Djordjevic, I. Optical Communication Fundamentals. In OFDM for Optical Communications; Shieh, W., Djordjevic, I., Eds.; Academic Press: Oxford, UK, 2010; pp. 53–118. [Google Scholar]
- Kryukov, Y.; Pokamestov, D.; Brovkin, A.; Shinkevich, A.; Shalin, G. MCS MAP FOR LINK-LEVEL SIMULATION OF TWO-USER PD-NOMA SYSTEM. Proc. Eng. 2024, 6, 151–160. [Google Scholar] [CrossRef]
- Tsipi, L.; Karavolos, M.; Papaioannou, G.; Volakaki, M.; Vouyioukas, D. Machine learning-based methods for MCS prediction in 5G networks. Telecommun. Syst. 2024, 86, 705–728. [Google Scholar] [CrossRef]
- Qiu, Y.; Gan, Z.; Pan, Y. Research on application of software simulation to spread spectrum communication systems. J. Syst. Simul. 1999, 11, 461–464. [Google Scholar]
- Wikipedia. Importance Sampling—Wikipedia, the Free Encyclopedia. Available online: https://en.wikipedia.org/wiki/Importance_sampling (accessed on 28 May 2024).
- Cavus, E.; Haymes, C.L.; Daneshrad, B. Low BER performance estimation of LDPC codes via application of importance sampling to trapping sets. IEEE Trans. Commun. 2009, 57, 1886–1888. [Google Scholar] [CrossRef]
- Jeruchim, M.C.; Balaban, P.; Shanmugan, K.S. Simulation of Communication Systems: Modeling, Methodology and Techniques; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Jeruchim, M. Techniques for estimating the bit error rate in the simulation of digital communication systems. IEEE J. Sel. Areas Commun. 1984, 2, 153–170. [Google Scholar] [CrossRef]
- Shin, S.K.; Park, S.K.; Kim, J.M.; Ko, S.C. New quasi-analytic ber estimation technique on the nonlinear satellite communication channels. IEE Proc.-Commun. 1999, 146, 68–72. [Google Scholar] [CrossRef]
- Land, I.; Hoeher, P.; Sorger, U. Log-likelihood values and Monte Carlo simulation-some fundamental results. In Proceedings of the International Symposium on Turbo Codes and Related Topics, Brest, France, 4–7 September 2000; pp. 43–46. [Google Scholar]
- Kabrisky, M. A Proposed Model for Visual Information Processing in the Human Brain; University of Illinois at Urbana-Champaign: Champaign, IL, USA, 1964. [Google Scholar]
- Giebel, H. Feature Extraction and Recognition of Handwritten Characters by Homogeneous Layers; Springer: Berlin/Heidelberg, Germany, 1971; pp. 162–169. [Google Scholar] [CrossRef]
- Fukushima, K. Cognitron: A self-organizing multilayered neural network. Biol. Cybern. 1975, 20, 121–136. [Google Scholar] [CrossRef] [PubMed]
- Cui, N. Applying Gradient Descent in Convolutional Neural Networks, 1st ed.; IOP Publishing: Bristol, UK, 2018; Volume 1004. [Google Scholar] [CrossRef]
- Boutaba, R.; Salahuddin, M.A.; Limam, N.; Ayoubi, S.; Shahriar, N.; Estrada-Solano, F.; Caicedo, O.M. A comprehensive survey on machine learning for networking: Evolution, applications and research opportunities. J. Internet Serv. Appl. 2018, 9, 1–99. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Internal Representations by Error Propagation; California Univ San Diego La Jolla Inst for Cognitive Science: La Jolla, CA, USA, 1985. [Google Scholar]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 2020, 53, 5455–5516. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Koushik, J. Understanding convolutional neural networks. arXiv 2016, arXiv:1605.09081. [Google Scholar] [CrossRef]
- Al Bataineh, A.; Kaur, D.; Al-khassaweneh, M.; Al-sharoa, E. Automated CNN Architectural Design: A Simple and Efficient Methodology for Computer Vision Tasks. Mathematics 2023, 11, 1141. [Google Scholar] [CrossRef]
- Bataineh, A.A. A comparative analysis of nonlinear machine learning algorithms for breast cancer detection. Int. J. Mach. Learn. Comput. 2019, 9, 248–254. [Google Scholar] [CrossRef]
- Zhou, Z.; Guan, W.; Wen, S. Recognition and evaluation of constellation diagram using deep learning based on underwater wireless optical communication. arXiv 2020, arXiv:2007.05890. [Google Scholar] [CrossRef]
- Natalino, C.; Schiano, M.; Di Giglio, A.; Wosinska, L.; Furdek, M. Field demonstration of machine-learning-aided detection and identification of jamming attacks in optical networks. In Proceedings of the 2018 European Conference on Optical Communication (ECOC), Rome, Italy, 23–27 September 2018; pp. 1–3. [Google Scholar] [CrossRef]
- dorronsoro, J.R.; González, A.; Cruz, C.S. Natural Gradient Learning in NLDA Networks. In Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence; Mira, J., Prieto, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 427–434. [Google Scholar] [CrossRef]
- Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar] [CrossRef]
- Amari, S.-I. Natural gradient works efficiently in learning. Neural Comput. 1998, 10, 251–276. [Google Scholar] [CrossRef]
- Rai, P.; Kaushik, R. Artificial intelligence based optical performance monitoring. J. Opt. Commun. 2024, 44, s1733–s1737. [Google Scholar] [CrossRef]
Model Name | The Equation of the Model | Ref. |
---|---|---|
DGF | The closed-form expression of the double gamma functions (DGFs) is given as follows: | [74] |
WDGF | The weighted double gamma functions (WDGFs) model is given as follows: | [75] |
CEAPE | A combination of exponential and arbitrary power functions (CEAPEs) is given as follows: | [76] |
BP | Beta Prime (BP) distribution is given as follows: | [77] |
Metadata | Values |
---|---|
Water types | Harbour and coastal waters |
Channel models | DGF, WDGF, CEAPF, and BP |
Pulse shapes | Gaussian and Rectangular |
Pulse widths | 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95 |
Centre positions on the eye diagrams | 0/1 |
Min | Max | Mean | |
---|---|---|---|
Training Time (h) | 8.33 | 10.99 | 9.6915 |
Predicting Time (s) | 0.1732 | 0.2098 | 0.1855 |
Loss | 0.2911 | 0.5190 | 0.3739 |
Validation Loss | 0.3605 | 0.6113 | 0.4730 |
RMSE | 0.3869 | 0.7253 | 0.5070 |
Validation RMSE | 0.5178 | 0.8686 | 0.6779 |
Loss Ratio | 0.0297 | 0.3381 | 0.2107 |
RMSE Ratio | 0.0183 | 0.4153 | 0.2551 |
Number of Filters | 16 | 64 | 40 |
Number of Parameters | 516,881 | 2,267,201 | 1,369,161 |
Standard Hyperparameters | Values |
---|---|
Colour mode | Grayscale |
Eye diagram image size (height × width) | 2366 × 3125 |
Model | Functional API |
Optimizer | Adam |
Loss function | MAE |
Metric | RMSE |
Batch size | 15 |
No. of convolutional layers | 5 |
No. of max pooling layers | 5 |
Filters size | 10 |
Filters stride | 1 |
Pooling size | 3 |
Pooling stride | 3 |
No. of hidden layers | 1 |
Activation function in the hidden layer | ReLU |
Activation function in the output layer | linear |
Learning rate | 10−5 |
Epochs | 250 |
Dropout rate | 0.45 |
Training Time (h) | Predicting Time (s) | Loss | Validation Loss | RMSE | Validation RMSE | Loss Ratio | RMSE Ratio | No. of Filters | No. of Parameters |
---|---|---|---|---|---|---|---|---|---|
9.82 | 0.18551209 | 0.519 | 0.6113 | 0.7253 | 0.8686 | 0.8490 | 0.8350 | 16 | 516,881 |
10.12 | 0.18702742 | 0.481 | 0.4956 | 0.673 | 0.6605 | 0.9703 | 1.0183 | 20 | 651,301 |
8.84 | 0.18525898 | 0.446 | 0.4907 | 0.592 | 0.7047 | 0.9097 | 0.8404 | 24 | 787,801 |
9.86 | 0.18294497 | 0.443 | 0.5089 | 0.575 | 0.7332 | 0.8701 | 0.7848 | 28 | 926,381 |
8.96 | 0.18577732 | 0.363 | 0.475 | 0.502 | 0.6566 | 0.7634 | 0.7638 | 32 | 1,067,041 |
10.19 | 0.18203078 | 0.326 | 0.4659 | 0.434 | 0.6689 | 0.7004 | 0.6493 | 36 | 1,209,781 |
9.97 | 0.18092463 | 0.355 | 0.4582 | 0.495 | 0.6766 | 0.7737 | 0.7317 | 40 | 1,354,601 |
10.62 | 0.18176481 | 0.361 | 0.5051 | 0.486 | 0.7251 | 0.7137 | 0.6707 | 44 | 1,501,501 |
10.09 | 0.19424853 | 0.339 | 0.5122 | 0.462 | 0.7133 | 0.6619 | 0.6476 | 48 | 1,650,481 |
10.99 | 0.18315452 | 0.314 | 0.4202 | 0.412 | 0.6336 | 0.7475 | 0.6509 | 52 | 1,801,541 |
9.08 | 0.18004519 | 0.291 | 0.4383 | 0.387 | 0.6617 | 0.6642 | 0.5847 | 56 | 1,954,681 |
9.12 | 0.17316376 | 0.331 | 0.3605 | 0.458 | 0.5178 | 0.9190 | 0.8839 | 60 | 2,109,901 |
8.33 | 0.20982659 | 0.293 | 0.4075 | 0.39 | 0.5916 | 0.7183 | 0.6589 | 64 | 2,267,201 |
No. of Parameters | Interpretation | |
---|---|---|
Loss | −0.8977 | Strong linear inverse correlation |
Val. loss | −0.7891 | Strong linear inverse correlation |
RMSE | −0.8863 | Strong linear inverse correlation |
Val. RMSE | −0.7029 | Strong linear inverse correlation |
No. of filters | 0.9997 | Very strong linear direct correlation |
No. of Filters | Interpretation | |
---|---|---|
Training Time | −0.1923 | Very weak linear inverse correlation |
Predicting Time | 0.1793 | Very weak linear direct correlation |
Loss | −0.9053 | Very strong linear inverse correlation |
Validation Loss | −0.7897 | Strong linear inverse correlation |
RMSE | −0.8429 | Strong linear inverse correlation |
Validation RMSE | −0.6416 | Moderate linear inverse correlation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Ramley, I.F.; Bedaiwi, N.M.; Al-Hadeethi, Y.; Barasheed, A.Z.; Al-Zhrani, S.; Chen, M. A Novel Underwater Wireless Optical Communication Optical Receiver Decision Unit Strategy Based on a Convolutional Neural Network. Mathematics 2024, 12, 2805. https://doi.org/10.3390/math12182805
El Ramley IF, Bedaiwi NM, Al-Hadeethi Y, Barasheed AZ, Al-Zhrani S, Chen M. A Novel Underwater Wireless Optical Communication Optical Receiver Decision Unit Strategy Based on a Convolutional Neural Network. Mathematics. 2024; 12(18):2805. https://doi.org/10.3390/math12182805
Chicago/Turabian StyleEl Ramley, Intesar F., Nada M. Bedaiwi, Yas Al-Hadeethi, Abeer Z. Barasheed, Saleha Al-Zhrani, and Mingguang Chen. 2024. "A Novel Underwater Wireless Optical Communication Optical Receiver Decision Unit Strategy Based on a Convolutional Neural Network" Mathematics 12, no. 18: 2805. https://doi.org/10.3390/math12182805
APA StyleEl Ramley, I. F., Bedaiwi, N. M., Al-Hadeethi, Y., Barasheed, A. Z., Al-Zhrani, S., & Chen, M. (2024). A Novel Underwater Wireless Optical Communication Optical Receiver Decision Unit Strategy Based on a Convolutional Neural Network. Mathematics, 12(18), 2805. https://doi.org/10.3390/math12182805