Estimation and Control of Positive Complex Networks Using Linear Programming
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
3.1. Event-Triggered Observer
3.2. Observer-Based Control
4. Numerical Example
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gupta, O.P.; Deshmukh, R.; Kumar, A.; Singh, S.K.; Sharma, P.; Ram, S.; Singh, G.P. From gene to biomolecular networks: A review of evidences for understanding complex biological function in plants. Curr. Opin. Biotechnol. 2022, 74, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Long, H.; Ci, J.; Guo, Z.; Wen, S.; Huang, T. Synchronization of coupled switched neural networks subject to hybrid stochastic disturbances. Neural Netw. 2023, 166, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Sethi, A.; Melamud, E. Joint inference of physiological network and survival analysis identifies factors associated with aging rate. Cell Rep. Methods 2022, 2, 100356. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.; Zhang, R.; Wang, D. Evolutionary game of cooperative behavior among social capitals in PPP projects: A complex network perspective. Ain Shams Eng. J. 2023, 14, 102006. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, B.; Zhang, P. Synchronization and state estimation for discrete-time coupled delayed complex-valued neural networks with random system parameters. Neural Netw. 2022, 150, 181–193. [Google Scholar] [CrossRef]
- Lu, R.; Yu, W.; Lü, J.; Xue, A. Synchronization on complex networks of networks. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 2110–2118. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Liang, J.; Liu, X. Synchronization and state estimation for discrete-time complex networks with distributed delays. IEEE Trans. Syst. Man Cybern. Part B 2008, 38, 1314–1325. [Google Scholar]
- Farina, L.; Rinaldi, S. Positive Linear Systems: Theory and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2000. [Google Scholar]
- Zhao, P.; Kang, Y.; Niu, B.; Zhao, Y. Input-to-state stability and stabilization for switched nonlinear positive systems. Nonlinear Anal. Hybrid Syst. 2023, 47, 101298. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, G.; Feng, Y.; Chen, Y. Event-triggered state-feedback and dynamic output-feedback control of PMJSs with intermittent faults. IEEE Trans. Autom. Control 2022, 68, 1039–1046. [Google Scholar] [CrossRef]
- Su, H.; Wu, H.; Chen, X.; Chen, M.Z. Positive edge consensus of complex networks. IEEE Trans. Syst. Man Cybern. Syst. 2017, 48, 2242–2250. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Z.; Sheng, W.; Alsaadi, F.E.; Alsaadi, F.E. Dynamic event-triggered mechanism for H∞ non-fragile state estimation of complex networks under randomly occurring sensor saturations. Inf. Sci. 2020, 509, 304–316. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Z.; Huang, T.; Wei, G. An event-triggered approach to state estimation for a class of complex networks with mixed time delays and nonlinearities. IEEE Trans. Cybern. 2015, 46, 2497–2508. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, Z.; Ma, L.; Alsaadi, F.E. A partial-nodes-based information fusion approach to state estimation for discrete-time delayed stochastic complex networks. Inf. Fusion 2019, 49, 240–248. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, J.; Zhang, X.; Xiao, Z.; Tao, J.; Wang, X. Dynamic event-triggered synchronization of complex networks with switching topologies: Asynchronous observer-based case. Appl. Math. Comput. 2022, 435, 127413. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, X.; Rao, R. Synchronization of nonidentical complex dynamical networks with unknown disturbances via observer-based sliding mode control. Neurocomputing 2021, 454, 441–447. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, J.; Lin, P.; Shi, X. Event-triggered PI control of positive switched systems. In Proceedings of the 2022 41st Chinese Control Conference (CCC), Hefei, China, 25–27 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1593–1598. [Google Scholar]
- Liu, L.J.; Karimi, H.R.; Zhao, X. New approaches to positive observer design for discrete-time positive linear systems. J. Frankl. Inst. 2018, 355, 4336–4350. [Google Scholar] [CrossRef]
- Kirner, R.; Puschner, P. A qualitative cybersecurity analysis of time-triggered communication networks in automotive systems. J. Syst. Archit. 2023, 136, 102835. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Q.; Fu, B. Further stabilization criteria of continuous systems with aperiodic time-triggered intermittent control. Commun. Nonlinear Sci. Numer. Simul. 2023, 125, 107387. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, B.; Shu, H. Finite-time resilient H∞ state estimation for discrete-time delayed neural networks under dynamic event-triggered mechanism. Neural Netw. 2020, 121, 356–365. [Google Scholar] [CrossRef]
- Liu, C.; Li, H.; Shi, Y.; Xu, D. Codesign of event trigger and feedback policy in robust model predictive control. IEEE Trans. Autom. Control 2019, 65, 302–309. [Google Scholar] [CrossRef]
- Zhang, J.F.; Liu, L.Y.; Fu, S.Z.; Li, S. Event-triggered control of positive switched systems with actuator saturation and time-delay. Int. J. Autom. Comput. 2021, 18, 141–154. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, J.; Li, S.; Yu, S. Event-triggered control of positive semi-markovian jump systems without/with input saturation. J. Shanghai Jiaotong Univ. 2022, 27, 723–736. [Google Scholar] [CrossRef]
- Xiao, S.; Zhang, Y.; Zhang, B. Event-triggered networkbased state observer design of positive systems. Inf. Sci. 2018, 469, 30–43. [Google Scholar] [CrossRef]
- Kaczorek, T. Positive 1D and 2D Systems; Springer: London, UK, 2001. [Google Scholar]
- Shen, B.; Wang, Z.; Liu, X. Bounded H∞ synchronization and state estimation for discrete time-varying stochastic complex networks over a finite horizon. IEEE Trans. Neural Netw. 2010, 22, 145–157. [Google Scholar] [CrossRef]
- Shen, B.; Wang, Z.; Ding, D.; Shu, H. H∞ state estimation for complex networks with uncertain inner coupling and incomplete measurements. IEEE Trans. Neural Netw. Learn. Syst. 2013, 24, 2027–2037. [Google Scholar] [CrossRef]
Notations | Expression |
---|---|
n-dimensional Euclidean space | |
real matrices | |
The element in the ith row and jth column of matrix A | |
All elements in A are non-negative (or positive) | |
The transposition of matrix A | |
The block-diagonal matrix consisting of | |
An -dimensional matrix with all elements being 1 | |
An n-dimensional matrix with all elements being 1 | |
The identity matrix | |
⨂ | The Kronecker product |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wu, Y.; Sun, Y.; Zhang, P. Estimation and Control of Positive Complex Networks Using Linear Programming. Mathematics 2024, 12, 2971. https://doi.org/10.3390/math12192971
Zhang Y, Wu Y, Sun Y, Zhang P. Estimation and Control of Positive Complex Networks Using Linear Programming. Mathematics. 2024; 12(19):2971. https://doi.org/10.3390/math12192971
Chicago/Turabian StyleZhang, Yan, Yuanyuan Wu, Yishuang Sun, and Pei Zhang. 2024. "Estimation and Control of Positive Complex Networks Using Linear Programming" Mathematics 12, no. 19: 2971. https://doi.org/10.3390/math12192971
APA StyleZhang, Y., Wu, Y., Sun, Y., & Zhang, P. (2024). Estimation and Control of Positive Complex Networks Using Linear Programming. Mathematics, 12(19), 2971. https://doi.org/10.3390/math12192971