Explicit Modeling of Multi-Product Customer Orders in a Multi-Period Production Planning Model
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Problem Description
3.2. Traditional Production Planning Model
- -
- = volume of log type i processed with sawing pattern j in period t (m3).
- -
- = volume of product p produced in period t (m3).
- -
- = volume of product p held as inventory in period t (m3).
- -
- = cost of log type i (USD/m3).
- -
- = processing cost of log type i (USD/m3)
- -
- = inventory cost of product p (USD/m3)
- -
- = volume of product p obtained if a log i is processed with sawing pattern j (m3).
- -
- = volume demanded of product p in period t (m3).
- -
- = processing time of a log type i (h/m3).
- -
- = available processing time in period t (h).
3.3. Proposed Production Planning Model
- -
- = volume of log type i processed with sawing pattern j in period t (m3).
- -
- = volume of product p produced in period t to fulfill order k (m3).
- -
- = fraction of the demand for product p in order k held as inventory in period t.
- -
- = binary variable that values 1 if order k is completed in period t, 0 otherwise.
- -
- = binary parameter equals 1 if order k must be finished by period t, 0 otherwise.
- -
- = volume of product p required in order k (m3).
- -
- = number of different products in order k.
3.4. Data and Computational Experiments
4. Discussion of Model Applications
4.1. Computational Behavior
4.2. Comparison of Model Decisions
5. Conclusions and Future Work
Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karimi, B.; Fatemi Ghomi, S.M.T.; Wilson, J.M. The Capacitated Lot Sizing Problem: A Review of Models and Algorithms. Omega 2003, 31, 365–378. [Google Scholar] [CrossRef]
- Missbauer, H.; Uzsoy, R. Optimization Models of Production Planning Problems. In Planning Production and Inventories in the Extended Enterprise: A State of the Art Handbook; Kempf, K.G., Keskinocak, P., Uzsoy, R., Eds.; International Series in Operations Research & Management Science; Springer: New York, NY, USA, 2011; Volume 1, pp. 437–507. ISBN 978-1-4419-6485-4. [Google Scholar]
- Tajik, M.; Hajimolana, S.M.; Daneshvar Kakhki, M. Production Planning Optimization in a Two-Echelon Multi-Product Supply Chain with Discrete Delivery and Storage at Manufacturer’s Warehouse. Mathematics 2024, 12, 1986. [Google Scholar] [CrossRef]
- Díaz-Madroñero, M.; Mula, J.; Peidro, D. A Review of Discrete-Time Optimization Models for Tactical Production Planning. Int. J. Prod. Res. 2014, 52, 5171–5205. [Google Scholar] [CrossRef]
- Tsai, S.C.; Yeh, Y.; Wang, H.; Chou, T.C. Efficient Optimization in Stochastic Production Planning Problems with Product Substitution. Comput. Oper. Res. 2024, 164, 106544. [Google Scholar] [CrossRef]
- Modibbo, U.M.; Gupta, S.; Ahmed, A.; Ali, I. An Integrated Multi-Objective Multi-Product Inventory Managed Production Planning Problem under Uncertain Environment. Ann. Oper. Res. 2024, 339, 1679–1723. [Google Scholar] [CrossRef]
- Talay, I.; Özdemir-Akyıldırım, Ö. Optimal Procurement and Production Planning for Multi-Product Multi-Stage Production under Yield Uncertainty. Eur. J. Oper. Res. 2019, 275, 536–551. [Google Scholar] [CrossRef]
- Bilgen, B.; Ozkarahan, I. Strategic Tactical and Operational Production-Distribution Models: A Review. Int. J. Technol. Manag. 2004, 28, 151–171. [Google Scholar] [CrossRef]
- Guzman, E.; Andres, B.; Poler, R. Models and Algorithms for Production Planning, Scheduling and Sequencing Problems: A Holistic Framework and a Systematic Review. J. Ind. Inf. Integr. 2022, 27, 100287. [Google Scholar] [CrossRef]
- Shah, N.K.; Ierapetritou, M.G. Integrated Production Planning and Scheduling Optimization of Multisite, Multiproduct Process Industry. Comput. Chem. Eng. 2012, 37, 214–226. [Google Scholar] [CrossRef]
- Pochet, Y. Mathematical Programming Models and Formulations for Deterministic Production Planning Problems. In Computational Combinatorial Optimization: Optimal or Provably Near-Optimal Solutions; Jünger, M., Naddef, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 57–111. ISBN 978-3-540-45586-8. [Google Scholar]
- Thomas, L.J.; McClain, J.O. Chapter 7 An Overview of Production Planning. In Handbooks in Operations Research and Management Science; Logistics of Production and Inventory; Elsevier: Amsterdam, The Netherlands, 1993; Volume 4, pp. 333–370. [Google Scholar]
- Demartini, M.; Tonelli, F.; Pacella, M.; Papadia, G. A Review of Production Planning Models: Emerging Features and Limitations Compared to Practical Implementation. Procedia CIRP 2021, 104, 588–593. [Google Scholar] [CrossRef]
- Kempf, K.G.; Keskinocak, P.; Uzsoy, R. Preface. In Planning Production and Inventories in the Extended Enterprise: A State of the Art Handbook; Kempf, K.G., Keskinocak, P., Uzsoy, R., Eds.; Springer: New York, NY, USA, 2011; Volume 1, pp. 1–20. ISBN 978-1-4419-6485-4. [Google Scholar]
- Dionne, L.; Kempf, K.G. Data in Production and Supply Chain Planning. In Planning Production and Inventories in the Extended Enterprise: A State of the Art Handbook; Kempf, K.G., Keskinocak, P., Uzsoy, R., Eds.; Springer: New York, NY, USA, 2011; Volume 1, pp. 167–184. ISBN 978-1-4419-6485-4. [Google Scholar]
- Naeem, M.A.; Dias, D.J.; Tibrewal, R.; Chang, P.C.; Tiwari, M.K. Production Planning Optimization for Manufacturing and Remanufacturing System in Stochastic Environment. J. Intell. Manuf. 2013, 24, 717–728. [Google Scholar] [CrossRef]
- Kim, H.; Jeong, H.-I.; Park, J. Integrated Model for Production Planning and Scheduling in a Supply Chain Using Benchmarked Genetic Algorithm. Int. J. Adv. Manuf. Technol. 2008, 39, 1207–1226. [Google Scholar] [CrossRef]
- Hahn, G.J.; Brandenburg, M. A Sustainable Aggregate Production Planning Model for the Chemical Process Industry. Comput. Oper. Res. 2018, 94, 154–168. [Google Scholar] [CrossRef]
- Zhou, Y.-W.; Lau, H.-S.; Yang, S.-L. A New Variable Production Scheduling Strategy for Deteriorating Items with Time-Varying Demand and Partial Lost Sale. Comput. Oper. Res. 2003, 12, 1753–1776. [Google Scholar] [CrossRef]
- Liu, X.; Tu, Y. Production Planning with Limited Inventory Capacity and Allowed Stockout. Int. J. Prod. Econ. 2008, 1, 180–191. [Google Scholar] [CrossRef]
- Hakeem-Ur-Rehman; Wan, G.; Zhan, Y. Multi-Level, Multi-Stage Lot-Sizing and Scheduling in the Flexible Flow Shop with Demand Information Updating. Int. Trans. Oper. Res. 2021, 28, 2191–2217. [Google Scholar] [CrossRef]
- Salamati-Hormozi, H.; Zhang, Z.-H.; Zarei, O.; Ramezanian, R. Trade-off between the Costs and the Fairness for a Collaborative Production Planning Problem in Make-to-Order Manufacturing. Comput. Ind. Eng. 2018, 126, 421–434. [Google Scholar] [CrossRef]
- Entezaminia, A.; Heydari, M.; Rahmani, D. A Multi-Objective Model for Multi-Product Multi-Site Aggregate Production Planning in a Green Supply Chain: Considering Collection and Recycling Centers. J. Manuf. Syst. 2016, P1, 63–75. [Google Scholar] [CrossRef]
- Almaraj, I.I.; Trafalis, T.B. A Robust Optimization Approach in a Multi-Objective Closed-Loop Supply Chain Model under Imperfect Quality Production. Ann. Oper. Res. 2022, 319, 1479–1505. [Google Scholar] [CrossRef]
- Vergara, F.P.; Palma, C.D.; Sepúlveda, H. A Comparison of Optimization Models for Lumber Production Planning. Rev. Bosque 2015, 36, 239–246. [Google Scholar] [CrossRef]
- Palma, C.D.; Vergara, F.P. A Multiobjective Model for the Cutting Pattern Problem with Unclear Preferences. For. Sci. 2016, 62, 220–226. [Google Scholar] [CrossRef]
- Varas, M.; Maturana, S.; Pascual, R.; Vargas, I.; Vera, J. Scheduling Production for a Sawmill: A Robust Optimization Approach. Int. J. Prod. Econ. 2014, 150, 37–51. [Google Scholar] [CrossRef]
- Kazemi Zanjani, M.; Ait-Kadi, D.; Nourelfath, M. Robust Production Planning in a Manufacturing Environment with Random Yield: A Case in Sawmill Production Planning. Eur. J. Oper. Res. 2010, 201, 882–891. [Google Scholar] [CrossRef]
- Zanjani, M.K.; Nourelfath, M.; Ait-Kadi, D. Sawmill Production Planning Under Uncertainty: Modelling and Solution Approaches. In Stochastic Programming; World Scientific Series in Finance; World Scientific: Singapore, 2012; Volume 4, pp. 347–395. ISBN 978-981-4407-50-2. [Google Scholar]
- Jodlbauer, H. Customer Driven Production Planning. Int. J. Prod. Econ. 2008, 111, 793–801. [Google Scholar] [CrossRef]
- IBM. IBM ILOG CPLEX Optimization Studio. Available online: https://www.ibm.com/docs/en/icos/22.1.1?topic=documentation-introducing-ilog-cplex-optimization-studio-2211 (accessed on 29 August 2024).
- de Abreu, A.P.; Fuchigami, H.Y. An Efficiency and Robustness Analysis of Warm-Start Mathematical Models for Idle and Waiting Times Optimization in the Flow Shop. Comput. Ind. Eng. 2022, 166, 107976. [Google Scholar] [CrossRef]
- Filomena, T.P.; Lejeune, M.A. Warm-Start Heuristic for Stochastic Portfolio Optimization with Fixed and Proportional Transaction Costs. J. Optim. Theory Appl. 2014, 161, 308–329. [Google Scholar] [CrossRef]
- Lu, H.-C.; Ko, Y.-C.; Huang, Y.-H. A Note on “Reducing the Number of Binary Variables in Cutting Stock Problems”. Optim. Lett. 2014, 8, 569–579. [Google Scholar] [CrossRef]
- Ramazan, S.; Dimitrakopoulos, R. Recent Applications of Operations Research and Efficient MIP Formulations in Open Pit Mining. SME Trans. 2004, 316, 73–78. [Google Scholar]
- Dvořák, P.; Eiben, E.; Ganian, R.; Knop, D.; Ordyniak, S. Solving Integer Linear Programs with a Small Number of Global Variables and Constraints. arXiv 2017, arXiv:1706.06084. [Google Scholar]
- Loeffler, D.; Anderson, N. Impacts of the Mountain Pine Beetle on Sawmill Operations, Costs, and Product Values in Montana. For. Prod. J. 2018, 68, 15–25. [Google Scholar] [CrossRef]
Instance Name | Number of | |||
---|---|---|---|---|
Logs | Periods | Orders | Products | |
Small (S) | 50 | 5 | 10 | 20 |
Medium (M) | 100 | 10 | 20 | 40 |
Large (L) | 150 | 15 | 30 | 60 |
Instance Name | Traditional | Proposed | |||||
---|---|---|---|---|---|---|---|
Variables (Binaries) | Constraints | Time (s) | Variables (Binaries) | Constraints | Time (s) | Warm Start (s) | |
Small (S) | 3950 (0) | 205 | 0.3 | 5750 (50) | 1165 | 1.1 | 1.7 |
Medium (M) | 15,800 (0) | 810 | 0.8 | 31,000 (200) | 8630 | 24.4 | 38.5 |
Large (L) | 35,550 (0) | 1815 | 1.8 | 87,750 (450) | 28,395 | 2595.6 | 542.3 |
Instance Name | Total Cost (USD) | ||
---|---|---|---|
Traditional | Proposed | Savings (%) | |
Small (S) | 3,497,891 | 3,488,409 | 0.3 |
Medium (M) | 8,519,665 | 8,026,729 | 5.8 |
Large (L) | 15,777,107 | 14,867,580 | 5.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palma, C.D.; Vergara, F.P.; Muñoz-Herrera, S. Explicit Modeling of Multi-Product Customer Orders in a Multi-Period Production Planning Model. Mathematics 2024, 12, 3029. https://doi.org/10.3390/math12193029
Palma CD, Vergara FP, Muñoz-Herrera S. Explicit Modeling of Multi-Product Customer Orders in a Multi-Period Production Planning Model. Mathematics. 2024; 12(19):3029. https://doi.org/10.3390/math12193029
Chicago/Turabian StylePalma, Cristian D., Francisco P. Vergara, and Sebastián Muñoz-Herrera. 2024. "Explicit Modeling of Multi-Product Customer Orders in a Multi-Period Production Planning Model" Mathematics 12, no. 19: 3029. https://doi.org/10.3390/math12193029
APA StylePalma, C. D., Vergara, F. P., & Muñoz-Herrera, S. (2024). Explicit Modeling of Multi-Product Customer Orders in a Multi-Period Production Planning Model. Mathematics, 12(19), 3029. https://doi.org/10.3390/math12193029