Periodic and Quasi-Periodic Orbits in the Collinear Four-Body Problem: A Variational Analysis
Abstract
:1. Introduction
2. Symmetric Collinear Equilibrium Configurations
3. Action Minimizing Orbits
4. Numerical Examples
- The inner part is the region around .
- The middle part can be described as follows:
- -
- For , .
- -
- For , .
- -
- For , .
- The outer part is dominated by empty space with some stray points.
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Aarseth, S.J. Formation and evolution of hierarchical systems. Rev. Mex. Astron. Astrof. (Ser. Conf.) 2004, 21, 156–162. [Google Scholar]
- Han, S.; Huang, A.; Ouyang, T.; Yan, D. New periodic orbits in the planar equal-mass five-body problem. Commun. Nonlinear Sci. Numer. Simul. 2017, 48, 425–438. [Google Scholar] [CrossRef]
- Horch, E. Binaries and Multiple Stellar Systems. In Planets, Stars and Stellar Systems; Oswalt, T.D., Barstow, M.A., Eds.; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Széll, A.; Érdi, B.; Sándor, Z.; Steves, B. Chaotic and stable behaviour in the Caledonian Symmetric Four-Body Problem. Mon. Not. R. Astron. Soc. 2004, 347, 380–388. [Google Scholar] [CrossRef]
- Tokovinin, A. From binaries to multiples. II. Hierarchical multiplicity of F and G dwarfs. Astron. J. 2004, 147, 87. [Google Scholar] [CrossRef]
- Steves, B.A.; Shoaib, M.; Sweatman, W.L. Analytical stability in the Caledonian Symmetric Five-Body Problem. Celest. Mech. Dyn. Astr. 2020, 132, 53. [Google Scholar] [CrossRef]
- Moulton, F.R. The straight line solution of the problem of N bodies. Ann. Math. 1910, 12, 1–17. [Google Scholar] [CrossRef]
- Gordon, W.B. A minimizing property of Keplerian orbits. Am. J. Math. 1970, 99, 961–971. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Zhou, Q. A minimizing property of Eulerian solutions. Celest. Mech. Dyn. Astr. 2004, 90, 239–243. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Zhou, Q. A minimizing property of Lagrangian solutions. Acta Math. Sin. 2001, 17, 497–500. [Google Scholar] [CrossRef]
- Chen, K.C. Action minimizing orbits in the parallelogram four-body problem with equal masses. Arch. Ration. Mech. Anal. 2021, 158, 293–318. [Google Scholar] [CrossRef]
- Shoaib, M.; Faye, I. Collinear equilibrium solutions of four-body problem. J. Astrophys. Astron. 2001, 32, 411–423. [Google Scholar] [CrossRef]
- Meyer, K.R.; Offin, D.C. Introduction to Hamiltonian Systems and the N-Body Problem; Springer: New York, NY, USA, 2017. [Google Scholar]
- Sweatman, W.L. Symmetrical one-dimensional four-body problem: A numerical investigation. Celest. Mech. Dyn. Astr. 2002, 82, 179–201. [Google Scholar] [CrossRef]
- Aarseth, S.J.; Mardling, R.A. The formation and evolution of multiple star systems. In Evolution of Binary and Multiple Star Systems. A Meeting in Celebration of Peter Eggleton’s 60th Birthday; Podsiadlowski, P., Rappaport, S., King, A.R., D’Antona, F., Burder, L., Eds.; ASP Conference Series; Publ. Astron. Soc. Pac., University of Chicago Press: Chicago, IL, USA, 2001; Volume 229, pp. 77–88. [Google Scholar]
- Kuruwita, R.L.; Haugbølle, R. The contribution of binary star formation via core fragmentation on protostellar multiplicity. Astron. Astrophys. 2003, 674, A196. [Google Scholar] [CrossRef]
- Roberts, L.C.J.; Tokovinin, A.; Mason, B.D.; Riddle, R.L.; Hartkopf, W.I.; Law, N.M.; Baranec, C. Know the star, know the planet. III. Discovery of late-type companions to two exoplanet host stars. Astron. J. 2015, 149, 118. [Google Scholar] [CrossRef]
- Alvarez-Ramírez, M.; Barrabés, E.; Medina, M.; Ollé, M. Ejection-Collision orbits in the symmetric collinear four–body problem. Commun. Nonlinear Sci. Numer. Simul. 2019, 71, 82–100. [Google Scholar] [CrossRef]
- Alvarez-Ramírez, M.; Medina, M. A model for binary-binary close encounters and collisions from a dynamical point of view. Astrophys. Space Sci. 2014, 349, 143–150. [Google Scholar] [CrossRef]
- Érdi, B.; Czirják, Z. Central configurations of four bodies’ with an axis of symmetry. Celest. Mech. Dyn. Astr. 2016, 125, 33–70. [Google Scholar] [CrossRef]
- Javed Idrisi, M.; Ullah, S. The photo-gravitational concentric Sitnikov problem. Astron. Comput. 2023, 45, 100764. [Google Scholar] [CrossRef]
- Ouyang, T.; Yan, D. Periodic solutions with alternating singularities in the collinear four-body problem. Celest. Mech. Dyn. Astr. 2011, 109, 229–239. [Google Scholar] [CrossRef]
- Sekiguchi, M.; Tanikawa, K. On the symmetric collinear four-body problem. Publ. Astron. Soc. Jpn. 2004, 56, 235–251. [Google Scholar] [CrossRef]
- Steves, B.A.; Roy, A.E. Some special restricted four-body problems—I. Modelling the Caledonian problem. Planet. Space Sci. 1998, 46, 1465–1474. [Google Scholar] [CrossRef]
- Tokovinin, A.A. The visual orbit of HD 98800. Astron. Lett. 1999, 25, 669–671. [Google Scholar]
- Zúñiga-Fernández, S.; Olofsson, J.; Bayo, A.; Haubois, X.; Corral-Santana, J.M.; Lopera-Mejía, A.; Ronco, M.P.; Tokovinin, A.; Gallenne, A.; Kennedy, G.M.; et al. The HD 98800 quadruple pre-main sequence system. Astron. Astrophys. 2021, 655, A15. [Google Scholar] [CrossRef]
- Cheb-Terrab, E.S.; de Oliveira, H.P. Poincaré sections of Hamiltonian systems. Comput. Phys. Commun. 1996, 95, 171–189. [Google Scholar] [CrossRef]
- Simó, C. Some questions looking for answers in dynamical systems. Discrete Contin. Dyn. Syst. 2018, 38, 6215–6239. [Google Scholar] [CrossRef]
- Celletti, A. Basics of regularization theory. In Chaotic Worlds: From Order to Disorder in Gravitational N-Body Dynamical Systems; Steves, B.A., Maciejewski, A.J., Hendry, M., Eds.; Springer: Dordrecht, The Netherlands, 2006; Volume 227, pp. 203–227. [Google Scholar]
- Mioc, V.; Csillik, I. The two-body problem in the point mass approximation field. IV. Symmetries. Rom. Astron. J. 2002, 12, 167–177. [Google Scholar]
- Stiefel, E.L.; Scheifele, G. Linear and Regular Celestial Mechanics; Springer: Berlin/Heidelberg, Germany, 1971. [Google Scholar]
- Stoica, C. Classical Scattering and Block Regularization for the Homogeneous Central Field Problem. Celest. Mech. Dyn. Astr. 2002, 84, 223–229. [Google Scholar] [CrossRef]
- Ollé, M.; Rodríguez, O.; Soler, J. Regularisation in ejection-collision orbits of the RTBP. Recent Adv. Pure Appl. Math. 2020, 4, 35–47. [Google Scholar]
- Simó, C.; Lacomba, E. Analysis of some degenerate quadruple collisions. Celestial Mech. 1982, 28, 49–62. [Google Scholar] [CrossRef]
- Sándor, Z.; Érdi, B.; Efthymiopoulos, C. The phase space structure around L4 in the restricted three-body problem. Celest. Mech. Dyn. Astr. 2000, 78, 113–123. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansur, A.; Shoaib, M.; Szücs-Csillik, I.; Offin, D.; Brimberg, J.; Fgaier, H. Periodic and Quasi-Periodic Orbits in the Collinear Four-Body Problem: A Variational Analysis. Mathematics 2024, 12, 3152. https://doi.org/10.3390/math12193152
Mansur A, Shoaib M, Szücs-Csillik I, Offin D, Brimberg J, Fgaier H. Periodic and Quasi-Periodic Orbits in the Collinear Four-Body Problem: A Variational Analysis. Mathematics. 2024; 12(19):3152. https://doi.org/10.3390/math12193152
Chicago/Turabian StyleMansur, Abdalla, Muhammad Shoaib, Iharka Szücs-Csillik, Daniel Offin, Jack Brimberg, and Hedia Fgaier. 2024. "Periodic and Quasi-Periodic Orbits in the Collinear Four-Body Problem: A Variational Analysis" Mathematics 12, no. 19: 3152. https://doi.org/10.3390/math12193152
APA StyleMansur, A., Shoaib, M., Szücs-Csillik, I., Offin, D., Brimberg, J., & Fgaier, H. (2024). Periodic and Quasi-Periodic Orbits in the Collinear Four-Body Problem: A Variational Analysis. Mathematics, 12(19), 3152. https://doi.org/10.3390/math12193152