On Completeness and Fixed Point Theorems in Fuzzy Metric Spaces
Abstract
:1. Introduction
2. Preliminaries
- (KM1)
- (KM2) , for all , if and only if
- (KM3)
- (KM4)
- (KM5) The function is left-continuous, where for each .
3. The Results
- (KM2) Let and assume that , for all . Then, for all and so . Thus, we conclude that . Obviously, if , we have for all .
- (KM4) Let and . Note that if , then . So, we will show the triangle inequality for the case . For this case, we distinguish two possibilities:
- 1.
- Suppose that . Then, or or, on the contrary, which is not possible. So, .
- 2.
- Now, assume . Then, and so and . Therefore,Hence, (KM4) is fulfilled for all possible cases.
- 1.
- Suppose that . Then, and so
- 2.
- Assume . Then,
- 3.
- Now, consider . Then,Thus, T is a fuzzy ψ-contractive mapping. Besides, note that for each , we have that for all . Hence, all the hypotheses of Theorem 2 are satisfied, which ensures the existence of the aforementioned fixed point . However, Theorem 1 cannot be applied to this mapping in the fuzzy metric considered since some conditions imposed in it are not fulfilled. Concretely, such a fuzzy metric is not strong since if we take , and , we have, for , the following:
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kramosil, I.; Michalek, J. Fuzzy metric and statistical metric spaces. Kybernetica 1975, 11, 326–334. [Google Scholar]
- Grabiec, M. Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 1988, 27, 385–389. [Google Scholar] [CrossRef]
- George, A.; Veeramani, P. On some results in fuzzy metric spaces. Fuzzy Sets Syst. 1994, 64, 395–399. [Google Scholar] [CrossRef]
- Saheli, M.; Mohsenialhosseini, S.A.M.; Goraghani, H.S. On ϕ-contractions and fixed point results in fuzzy metric spaces. Appl. Gen. Topol. 2023, 24, 469–483. [Google Scholar] [CrossRef]
- Gopal, D.; Martinez-Moreno, J.; Ozgur, N. On fixed figure problems in fuzzy metric spaces. Kybernetika 2023, 159, 110–129. [Google Scholar] [CrossRef]
- Or, A. Double sequences with ideal convergence in fuzzy metric spaces. AIMS Math. 2023, 8, 28090–28104. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y. On p-convergent sequences and p-Cauchy sequences in fuzzy metric spaces. Fuzzy Sets Syst. 2023, 466, 108464. [Google Scholar] [CrossRef]
- Grigorenko, O.; Šostak, A. Fuzzy metrics in terms of fuzzy relations. Mathematics 2023, 11, 3528. [Google Scholar] [CrossRef]
- Bashir1, Z.; Ullah, A. A study on the normality of Wijsman topology of a fuzzy metric space. Soft Comput. 2023, 27, 17–23. [Google Scholar] [CrossRef]
- Shi, L. Betweenness relations and gated sets in fuzzy metric spaces. Fuzzy Sets Syst. 2022, 437, 1–19. [Google Scholar] [CrossRef]
- Grzegrzolka, P. Asymptotic dimension of fuzzy metric spaces. Fuzzy Sets Syst. 2022, 437, 20–34. [Google Scholar] [CrossRef]
- Vasuki, R.; Veeramani, P. Fixed point theorems and Cauchy sequences in fuzzy metric spaces. Fuzzy Sets Syst. 2003, 135, 415–417. [Google Scholar] [CrossRef]
- Tirado, P. On compactness and G-completeness in fuzzy metric spaces. Iran. J. Fuzzy Syst. 2012, 9, 151–158. [Google Scholar] [CrossRef]
- Abbas, M.; Imdad, M.; Gopal, D. ψ-Weak contractions in fuzzy metric spaces. Iran. J. Fuzzy Syst. 2011, 8, 141–148. [Google Scholar] [CrossRef]
- Wardowski, D. Fuzzy contractive mappings and fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 2013, 222, 108–114. [Google Scholar] [CrossRef]
- Mihet, D. A note on fuzzy contractive mappings in fuzzy metric spaces. Fuzzy Sets Syst. 2014, 251, 83–91. [Google Scholar] [CrossRef]
- Shukla, S.; Gopal, D.; Sintunavarat, W. A new class of fuzzy contractive mappings and fixed point theorems. Fuzzy Sets Syst. 2016, 350, 85–94. [Google Scholar] [CrossRef]
- Beg, I.; Gopal, D.; Dosenovic, T.; Rakic, D. α-Type fuzzy H-contractive mappings in fuzzy metric spaces. Fixed Point Theory 2018, 19, 463–474. [Google Scholar] [CrossRef]
- Zheng, D.W.; Wang, P. Meir-Keeler theorems in fuzzy metric spaces. Fuzzy Sets Syst. 2019, 370, 120–128. [Google Scholar] [CrossRef]
- Miheţ, D. Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets Syst. 2008, 159, 739–744, Erratum in Fuzzy Sets Syst. 2010, 161, 1150–1151. [Google Scholar] [CrossRef]
- Gregori, V.; Miñana, J.J.; Roig, B.; Sapena, A. A characterization of p-complete fuzzy metric spaces. Fuzzy Sets Syst. 2022, 444, 144–155. [Google Scholar] [CrossRef]
- Gregori, V.; Miñana, J.J. On fuzzy ψ-contractive sequences and fixed point theorems. Fuzzy Sets Syst. 2016, 300, 93–101. [Google Scholar] [CrossRef]
- Gregori, V.; Miñana, J.J.; Morillas, S. On completable fuzzy metric spaces. Fuzzy Sets Syst. 2015, 267, 133–139. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gregori, V.; Miñana, J.-J.; Roig, B.; Sapena, A. On Completeness and Fixed Point Theorems in Fuzzy Metric Spaces. Mathematics 2024, 12, 287. https://doi.org/10.3390/math12020287
Gregori V, Miñana J-J, Roig B, Sapena A. On Completeness and Fixed Point Theorems in Fuzzy Metric Spaces. Mathematics. 2024; 12(2):287. https://doi.org/10.3390/math12020287
Chicago/Turabian StyleGregori, Valentín, Juan-José Miñana, Bernardino Roig, and Almanzor Sapena. 2024. "On Completeness and Fixed Point Theorems in Fuzzy Metric Spaces" Mathematics 12, no. 2: 287. https://doi.org/10.3390/math12020287
APA StyleGregori, V., Miñana, J. -J., Roig, B., & Sapena, A. (2024). On Completeness and Fixed Point Theorems in Fuzzy Metric Spaces. Mathematics, 12(2), 287. https://doi.org/10.3390/math12020287