Compactness of Commutators for Riesz Potential on Generalized Morrey Spaces
Abstract
:1. Introduction
2. On the Pre-Compactness of a Set in Generalized Morrey Spaces
3. Compactness of the Commutator for the Riesz Potential on Generalized Morrey Spaces
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morrey, C. On the solutions of quasi-linear elleptic partial diferential equations. Trans. Am. Math. Soc. 1938, 1, 126–166. [Google Scholar] [CrossRef]
- Kato, T. Strong solutions of the Navier-Stokes equation in Morrey spaces. Bol. Soc. Brasil. Mat. 1992, 22, 127–155. [Google Scholar] [CrossRef]
- Taylor, M. Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations. Commun. Part. Differ. Equ. 1992, 17, 1407–1456. [Google Scholar] [CrossRef]
- Shen, Z. The periodic Schrödinger operators with potentials in the Morrey class. J. Funct. Anal. 2002, 193, 314–345. [Google Scholar] [CrossRef]
- Guliyev, V.S.; Guliyev, R.V.; Omarova, M.N.; Ragusa, M.A. Schrodinger type operators on local generalized Morrey spaces related to certain nonnegative potentials. Discret. Contin. Dyn. Syst. Ser. B 2020, 5, 671–690. [Google Scholar] [CrossRef]
- Di Fazio, G.; Ragusa, M. Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with dicontinuous coefficients. J. Funct. Anal. 1993, 112, 241–256. [Google Scholar] [CrossRef]
- Huang, Q. Estimates on the generalized Morrey spaces and BMOψ for linear elliptic systems. Indiana Univ. Math. J. 1996, 45, 397–439. [Google Scholar] [CrossRef]
- Mizuhara, T. Boundedness of some classical operators on generalized Morrey spaces. In Proceedings of the Harmonic Analisis, ICM 90 Satellite Proceedings, Sendai, Japan, 14–18 August 1990; Igari, S., Ed.; Springer: Tokyo, Japan, 1991; pp. 183–189. [Google Scholar] [CrossRef]
- Nakai, E. Hardy—Littlewood maximal operator, singular integral operators and Riesz potentials on generalized Morrey spaces. Math. Nachr. 1994, 166, 95–103. [Google Scholar] [CrossRef]
- Guliyev, V.S. Integral Operators on Function Spaces on the Homogeneous Groups and on Domains in Rn. DSci Dissertation, Moscow Mathematical Institute Steklov, Russia, Moscow, 1994; pp. 1–329. (In Russian). [Google Scholar]
- Burenkov, V.I. Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. I. Eurasian Math. J. 2012, 3, 11–32. [Google Scholar]
- Burenkov, V.I. Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. II. Eurasian Math. J. 2013, 1, 21–45. [Google Scholar]
- Peetre, J. On the theory of Lp,λ spaces. J. Funct. Anal. 1969, 4, 71–87. [Google Scholar] [CrossRef]
- Adams, D.R. Lectures on Lp-Potential Theory. Umea Univ. 1981, 2, 1–74. [Google Scholar]
- Ding, Y. A characterization of BMO via commutators for some operators. Northeast. Math. J. 1997, 13, 422–432. [Google Scholar]
- Guliyev, V.S. Generalized weighted Morrey spaces and higher order commutators of sublinear operators. Eurasian Math. J. 2012, 3, 33–61. [Google Scholar]
- Chen, Y.; Ding, Y.; Wang, X. Compactness of commutators of Riesz potential on Morrey space. Potential Anal. 2009, 4, 301–313. [Google Scholar] [CrossRef]
- Sawano, Y.; Shiai, S. Compact commutators on Morrey spaces with non-doubling measures. Georgian Math. J. 2008, 2, 353–376. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, Y.; Wang, X. Compactness of Commutators for singular integrals on Morrey spaces. Can. J. Math. 2012, 64, 257–281. [Google Scholar] [CrossRef]
- Bandaliyev, R.A.; Górka, P.; Guliyev, V.S.; Sawano, Y. Relatively Compact Sets in Variable Exponent Morrey Spaces on Metric Spaces. Mediterr. J. Math. 2021, 6, 1–23. [Google Scholar] [CrossRef]
- Bokayev, N.A.; Matin, D.T.; Baituyakova, Z.Z. A sufficient condition for compactness of the commutators of Riesz potential on global Morrey-type space. AIP Conf. Proc. 2018, 1997, 020008. [Google Scholar] [CrossRef]
- Matin, D.T.; Akhazhanov, T.B.; Adilkhanov, A. Compactness of Commutators for Riesz Potential on Local Morrey-type spaces. Bull. Karagand. Univ. Math. Ser. 2023, 110, 93–103. [Google Scholar] [CrossRef]
- Stein, E.M. Singular Integral and Differentiability Properties of Functions; Princeton University Press: Princeton, NJ, USA, 1971. [Google Scholar] [CrossRef]
- Stein, A.M.; Weiss, G. Introduction to Fourier Analysis on Euclidean Spaces; Princeton University Press: Princeton, NJ, USA, 1971. [Google Scholar]
- Yang, X.; Zhang, Q.; Yuan, G.; Sheng, Z. On positivity preservation in nonlinear finite volume method for multi-term fractional subdiffusion equation on polygonal meshes. Nonlinear Dyn. 2018, 92, 595–612. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Z. On conservative, positivity preserving, nonlinear FV scheme on distorted meshes for the multi-term nonlocal Nagumo-type equations. Appl. Math. Lett. 2024, 150, 108972. [Google Scholar] [CrossRef]
- Iwaniec, T.; Sboedone, C. Riesz treansform and elliptic PDE’s with VMO-coefficients. J. D’Anal. Math. 1998, 74, 183–212. [Google Scholar] [CrossRef]
- Palagachev, D.; Softova, L. Singular integral operators, Morrey spaces and fine regularity of solutions to PDE’s. Potential Anal. 2004, 20, 237–263. [Google Scholar] [CrossRef]
- Yosida, K. Functional Analysis; Springer: Berlin/Heidelberg, Germany, 1978. [Google Scholar] [CrossRef]
- Bokayev, N.A.; Burenkov, V.I.; Matin, D.T. On pre-compactness of a set in general local and global Morrey-type spaces. Eurasian Math. J. 2017, 3, 109–115. [Google Scholar]
- Matin, D.T.; Baituyakova, Z.Z.; Adilkhanov, A.N.; Bostanov, B.O. Sufficient conditions for the pre-compactness of sets in Local Morrey-type spaces. Bull. Karagand. Univ. Math. Ser. 2018, 92, 54–63. [Google Scholar] [CrossRef]
- Bokayev, N.A.; Burenkov, V.I.; Matin, D.T. Sufficient conditions for the pre-compactness of sets in global Morrey-type spaces. AIP Conf. Proc. 2017, 1980, 030001. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bokayev, N.; Matin, D.; Akhazhanov, T.; Adilkhanov, A. Compactness of Commutators for Riesz Potential on Generalized Morrey Spaces. Mathematics 2024, 12, 304. https://doi.org/10.3390/math12020304
Bokayev N, Matin D, Akhazhanov T, Adilkhanov A. Compactness of Commutators for Riesz Potential on Generalized Morrey Spaces. Mathematics. 2024; 12(2):304. https://doi.org/10.3390/math12020304
Chicago/Turabian StyleBokayev, Nurzhan, Dauren Matin, Talgat Akhazhanov, and Aidos Adilkhanov. 2024. "Compactness of Commutators for Riesz Potential on Generalized Morrey Spaces" Mathematics 12, no. 2: 304. https://doi.org/10.3390/math12020304
APA StyleBokayev, N., Matin, D., Akhazhanov, T., & Adilkhanov, A. (2024). Compactness of Commutators for Riesz Potential on Generalized Morrey Spaces. Mathematics, 12(2), 304. https://doi.org/10.3390/math12020304