Going Next after “A Guide to Special Functions in Fractional Calculus”: A Discussion Survey
Abstract
:1. Introduction
2. Preliminary Definitions
3. Multi-Index M-L-P Functions of Le Roy Type as - and -Functions
4. Related “Eigen”-Operators for Some Classes of SF: Gelfond–Leontiev Operators and Operators of FC
4.1. Preliminaries for the Gelfond–Leontiev Operators
4.2. G-L Operators Related to M-L Functions and to FC Operators
4.3. G-L Operators for Multi-Index M-L Functions and Generalized FC
4.4. G-L Operators Generated by the Le Roy-Type Functions
4.5. Composition/Decomposition Property of the Gelfond–Leontiev–Le Roy Integrations
5. Illustration of Results from Section 3 and Section 4 for Particular Cases of the Le Roy-Type Functions
6. Some Short Reminders from “Guide to SF of FC”
6.1. Classes of G- and H-Functions as Kernels of Laplace-Type Integral Transforms and of Operators of Generalized Fractional Calculus
6.2. Some Important Cases of Mittag-Leffler Functions (7) and Multi-Index Mittag-Leffler Functions (9)
- We mention a few cases of M-L functions () from §5.1 of [9]: Generalized trigonometric functions of higher integer orders , and, resp., sine-functions; and next mentioned their “fractalized” analogues; also the Lorenzo–Hartley functions, the Rabotnov function, etc. Extensive literature is nowadays available on the theory of the M-L functions and their cases, with a few to mention such as: [2,30,31,39,50,87], etc.
- For , a not very popular function introduced by Dzrbashjan [29], in his and, respectively, in “our” denotations, is:
7. Other Important SF in the Scheme of the - and -Functions
- The polylogarithm function.
- The generalized Riemann Zeta function (Hurwitz–Lerch Zeta function) ([1] eq.(1), §1.11).
- The generalized Hurwitz–Lerch Zeta function (Srivastava–Saxena–Pogány–Saxena [97]).
- Generalized Wright–Bessel function (see Jolly [94], (1.1.27), p.13)
- In Bhatter et al. [98], the authors introduce the so-called E-function:
8. Some Remarks and Open Problems
- 8.1.
- Open problem to determine G-L-type operators of generalized integration (33) in the case of the Prabhakar-type Le Roy functions (24), and the corresponding “eigenoperators” as the generalized differentiation (32), for which these special functions can appear as eigenfunctions. As mentioned in Kiryakova [64], even for the simplest case and , the problem stays open if . In the particular case of Prabhakar parameters , we proposed such operators in Section 4 here, see (58) as well as (61).
- 8.2.
- Open problem to find conditions of parameters for which the Le Roy-type functions (24), or the simpler (22), or the multi-index Mittag-Leffler functions (9) and (10), are Completely Monotone (CM). Over many years, several attempts have been made to study the CM of some simpler classes of special functions. As a reminder, a function is called CM if it is infinitely differentiable and , . According to the Bernstein theorem ([99]), a function f is CM if and only if it can be uniquely represented as a Laplace transform of a non-negative (weight) function.
- 8.3.
- Open problem for the behavior of the I- and -functions near the third singular points on the circle of convergence when these functions are analytic inside/outside disks with final radius R. Even for the Fox H-functions, in general, it is still an open problem, but some particular results are available in Karp [21] (12.24).
- 8.4.
- Open problem (as mentioned in Section 5) to define and study the properties of integral transforms of Laplace type with kernels . These should be analogues of the Laplace; Borel-Dzrbashjan; Meijer; Obrechkoff; and “fractional” Obrechkoff transforms, where the kernel functions are, resp.: ; ; ; ; , etc. See some details in Kiryakova [9] (Sect.3), and our works such as [20] (Ch.2, Ch.3, Ch.5); [37,38,84].
- 8.5.
- Open problem related to the notion of the non-holomonicity for the case of I-functions and Le Roy-type functions. A sequence is called holonomic (p-recursive) if it satisfies a homogeneous linear recurrence , with polynomials , and not identically zero. A formal power series is holonomic (d-finite) if it satisfies a homogenous linear ordinary differential equation with polynomial coefficients. It is well known that such a power series is holonomic if and only if its coefficient sequence is.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.T. (Eds.) Higher Transcendental Functions; McGraw Hill: New York, NY, USA, 1953–1955; Volume 1–3. [Google Scholar]
- Gorenflo, R.; Kilbas, A.; Mainardi, F.; Rogosin, S. Mittag-Leffler Functions, Related Topics and Applications, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Saigo, M. H-Transforms: Theory and Applications; Series on Analytic Methods and Special Functions, 9; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Marichev, O.I. Handbook of Integral Transforms of Higher Transcendental Functions, Theory and Algorithmic Tables; Ellis Horwood: Chichester, UK, 1983. Transl. from Russian Ed., Method of Evaluation of Integrals of Special Functions; Nauka i Teknika: Minsk, Russia, 1978. (In Russian) [Google Scholar]
- Mathai, A.M.; Saxena, R.K.; Haubold, H.J. The H-Function. Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Prudnikov, A.P.; Brychkov, Y.; Marichev, O.I. Integrals and Series, Vol. 3: More Special Functions; Gordon and Breach Science Publishers: New York, NY, USA; London, UK; Paris, France; Tokyo, Japan, 1992. [Google Scholar]
- Srivastava, H.M.; Gupta, K.S.; Goyal, S.P. The H-Functions of One and Two Variables with Applications; South Asian Publications: New Delhi, India, 1982. [Google Scholar]
- Kiryakova, V. A guide to special functions in fractional calculus. Mathematics 2021, 9, 106. [Google Scholar] [CrossRef]
- Rathie, A. A new generalization of the generalized hypergeometric functions. Le Matematiche 1997, LII, 297–310. [Google Scholar]
- Inayat-Hussain, A.A. New properties of hypergeometric series derivable from Feynman integrals: II. A generalization of the H-function. J. Phys. A Math. Gen. 1987, 20, 4119–4128. [Google Scholar]
- Buschman, R.G.; Srivastava, H.M. The H¯ functions associated with a certain class of Feynman integrals. J. Phys. A Math. Gen. 1990, 23, 4707–4710. [Google Scholar] [CrossRef]
- Kiryakova, V.; Paneva-Konovska, J. Multi-index Le Roy functions of Mittag-Leffler-Prabhakar type. Int. J. Appl. Math. 2022, 35, 743–766. [Google Scholar] [CrossRef]
- Kiryakova, V.; Paneva-Konovska, J.; Rogosin, S.; Dubatovskaya, M. Erdélyi-Kober fractional integrals (Part 2) of the multi-index Mittag-Leffler-Prabhakar functions of Le Roy type. Int. J. Appl. Math. 2023, 36, 605–623. [Google Scholar] [CrossRef]
- Paneva-Konovska, J. Prabhakar functions of Le Roy type: Inequalities and asymptotic formulae. Mathematics 2023, 11, 3768. [Google Scholar] [CrossRef]
- Paneva-Konovska, J.; Kiryakova, V.; Rogosin, S.; Dubatovskaya, M. Laplace transform (Part 1) of the multi-index Mittag-Leffler-Prabhakar functions of Le Roy type. Int. J. Appl. Math. 2023, 36, 455–474. [Google Scholar] [CrossRef]
- Pincherle, S. Sulle funzioni ipergeometriche generalizzate. Atti R. Accad. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 1888, 4, 694–700, 792–799, (Reprinted in Salvatore Pincherle: Opere Scelte, UMI (Unione Matematica Italiana) Cremonese: Roma, Italy, 1954; Volume 1, pp. 223–239). [Google Scholar]
- Mainardi, F.; Pagnini, G. Salvatore Pincherle: The pioneer of the Mellin-Barnes integrals. J. Comput. Appl. Math. 2003, 153, 331–341. [Google Scholar] [CrossRef]
- Fox, C. The G and H-functions as symmetric Fourier kernels. Trans. Am. Math. Soc. 1961, 98, 395–429. [Google Scholar]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Longman: Harlow, UK; J. Wiley: New York, NY, USA, 1994. [Google Scholar]
- Karp, D. Chapter 12—A note on Fox’s H-function in the light of Braaksma’s results. In Special Functions and Analysis of Differential Equations; Agarwal, P., Agarwal, R.P., Ruzhansky, M., Eds.; Chapman and Hall/CRC: New York, NY, USA, 2020; 12p, Available online: http://arxiv.org/abs/1904.10651v1 (accessed on 16 December 2023).
- Braaksma, B.L.J. Asymptotic expansions and analytic continuation for a class of Barnes integrals. Compos. Math. 1962–1964, 15, 239–341. [Google Scholar]
- Meijer, C.S. On the G-function. Indag. Math. 1946, 8, 124–134, 213–225, 312–324, 391–400, 468–475, 595–602, 661–670, 713–723. [Google Scholar]
- Wright, E.M. On the coefficients of power series having exponential singularities. J. Lond. Math. Soc. 1933, 8, 71–79. [Google Scholar] [CrossRef]
- Wright, E.M. The generalized Bessel function of order greater than one. Quart. J. Math. Oxf. Ser. 1940, 11, 36–48. [Google Scholar] [CrossRef]
- Fox, C. The asymptotic expansion of generalized hypergeometric functons. Proc. Lond. Math. Soc. Ser. 2 1928, 27, 389–400. [Google Scholar] [CrossRef]
- Gorenflo, R.; Luchko, Y.; Mainardi, F. Analytical properties and applications of the Wright function. Fract. Calc. Appl. Anal. 1999, 2, 383–414. [Google Scholar]
- Mittag-Leffler, G.M. Sur la nouvelle fonction Eα(x). C. R. de l’Acad. Sci. 1903, 137, 554–558. [Google Scholar]
- Dzrbashjan, M.M. On the integral transformations generated by the generalized Mittag-Leffler function. Izv. Arm. SSR 1960, 13, 21–63. (In Russian) [Google Scholar]
- Haubold, H.J.; Mathai, A.M.; Saxena, R.K. Mittag-Leffler functions and their applications. J. Appl. Math. 2011, 2011, 298628. [Google Scholar] [CrossRef]
- Rogosin, S. The role of the Mittag-Leffler function in fractional modeling. Mathematics 2015, 3, 368–381. [Google Scholar] [CrossRef]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Garra, R.; Garrappa, R. The Prabhakar or three parameter Mittag–Leffler function: Theory and application. Commun. Nonlinear Sci. Numer. Simul. 2018, 56, 314–319. [Google Scholar] [CrossRef]
- Giusti, A.; Colombaro, I.; Garra, R.; Garrappa, R.; Polito, F.; Popolizio, M.; Mainardi, F. A practical guide to Prabhakar fractional calculus. Fract. Calc. Appl. Anal. 2020, 23, 88–111. [Google Scholar] [CrossRef]
- Luchko, Y.F.; Srivastava, H.M. The exact solution of certain differential equations of fractional order by using operational calculus. Comput. Math. Appl. 1995, 29, 73–85. [Google Scholar] [CrossRef]
- Yakubovich, S.; Luchko, Y. The Hypergeometric Approach to Integral Transforms and Convolutions; Series Mathematics and Its Applications 287; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1994. [Google Scholar]
- Kiryakova, V. Multiple Dzrbashjan-Gelfond-Leontiev fractional differintegrals. In Recent Advances in Applied Mathematics’96 (Proceedings of International Workshop, Kuwait University), 1996; pp. 281–294. Available online: https://www.researchgate.net/publication/307122608_Multiple_Dzrbashjan-Gelfond-Leontiev_Fractional_Differintegrals_1 (accessed on 16 December 2023).
- Kiryakova, V. Multiindex Mittag-Leffler functions, related Gelfond-Leontiev operators and Laplace type integral transforms. Fract. Calc. Appl. Anal. 1999, 2, 445–462. [Google Scholar]
- Kiryakova, V. Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus. J. Comput. Appl. Math. 2000, 118, 241–259. [Google Scholar] [CrossRef]
- Kiryakova, V. The multi-index Mittag-Leffler functions as important class of special functions of fractional calculus. Comput. Math. Appl. 2010, 59, 1885–1895. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Koroleva, A.A.; Rogosin, S.V. Multi-parametric Mittag-Leffler functions and their extension. Fract. Calc. Appl. Anal. 2013, 16, 378–404. [Google Scholar] [CrossRef]
- Paneva-Konovska, J. Multi-index (3m-parametric) Mittag-Leffler functions and fractional calculus. C. R. Acad. Bulg. Sci. 2011, 64, 1089–1098. [Google Scholar]
- Paneva-Konovska, J. From Bessel to Multi-Index Mittag-Leffler Functions: Enumerable Families, Series in Them and Convergence; World Scientific Publishing: London, UK, 2016. [Google Scholar]
- Paneva-Konovska, J.; Kiryakova, V. On the multi-index Mittag-Leffler functions and their Mellin transforms. Int. J. Appl. Math. 2020, 33, 549–571. [Google Scholar] [CrossRef]
- Rogosin, S.; Dubatovskaya, M. Multi-parametric Le Roy function revisited. Fract. Calc. Appl. Anal. 2023. Published Online First. [Google Scholar] [CrossRef]
- Slater, L.J. Generalized Hypergeomtric Functions; Cambridge University Press: London, UK; New York, NY, USA, 1966. [Google Scholar]
- Saxena, R.K. Functional relations involving generalized H-function. Le Matematiche 1998, LIII, 123–131. [Google Scholar]
- Le Roy, É. Sur les séries divergentes et les fonctions définies par un développement de Taylor. Ann. De La Fac. Des Sci. De Touluse 2e Sér. 1900, 2, 385–430. (In French) [Google Scholar]
- Le Roy, É. Valéurs asymptotiques de certaines séries procédant suivant les puissances entères et positives d’une variable réelle. Bulletin des Sci. Mathématiques, 2eme sér. 1900, 24, 245–268. (In French) [Google Scholar]
- Mainardi, F. Why the Mittag-Leffler function can be considered the Queen function of the fractional calculus? Entropy 2020, 22, 1359. [Google Scholar] [CrossRef]
- Kolokoltsov, V. The law of large numbers for quantum stochastic filtering and control of many particle systems. Theor. Math. Phys. 2021, 208, 937–957. [Google Scholar] [CrossRef]
- Gerhold, S. Asymptotics for a variant of the Mittag-Leffler function. Integral Transform. Spec. Funct. 2012, 23, 397–403. [Google Scholar] [CrossRef]
- Garra, R.; Polito, F. On some operators involving Hadamard derivatives. Integral Transform. Spec. Funct. 2013, 24, 773–782. [Google Scholar] [CrossRef]
- Garrappa, R.; Rogosin, S.; Mainardi, F. On a generalized three-parameter Wright function of le Roy type. Fract. Calc. Appl. Anal. 2017, 206, 1196–1215. [Google Scholar] [CrossRef]
- Garra, R.; Orsingher, E.; Polito, F. A note on Hadamard fractional differential equations with varying coefficients and their applications in probability. Mathematics 2018, 6, 4. [Google Scholar] [CrossRef]
- Gorska, K.; Horzela, A.; Garrappa, R. Some results on the complete monotonicity of Mittag-Leffler functions of Le Roy type. Fract. Calc. Appl. Anal. 2010, 22, 1284–1306. [Google Scholar] [CrossRef]
- Simon, T. Remark on a Mittag-Leffler function of Le Roy type. Integral Transform. Spec. Funct. 2022, 33, 108–114. [Google Scholar] [CrossRef]
- Mehrez, K.; Das, S. On some geometric properties of the Le Roy-type Mittag-Leffler functions. Hacet. J. Math. Stat. 2022, 51, 1085–1103. [Google Scholar] [CrossRef]
- Mehrez, K. Study of the analytic function related to the Le-Roy-type Mittag-Leffler function. Ukr. Math. J. 2023, 75, 719–743. [Google Scholar] [CrossRef]
- Luchko, Y. Operational method in fractonal calculus. Fract. Calc. Appl. Anal. 1999, 2, 463–488. [Google Scholar]
- Rogosin, S.; Dubatovskaya, M. Multi-parametric Le Roy function. Fract. Calc. Appl. Anal. 2023, 26, 54–69. [Google Scholar] [CrossRef]
- Tomovski, Ž.; Mehrez, K. Some families of generalized Mathieu–type power series, associated probability distributions and related inequalities involving complete monotonicity and log–convexity. Math. Inequal. Appl. 2017, 20, 973–986. [Google Scholar] [CrossRef]
- Gelfond, A.O.; Leontiev, A.F. On a generalization of the Fourier series. Mat. Sbornik 1951, 29, 477–500. (In Russian) [Google Scholar]
- Kiryakova, V. Gel’fond-Leont’ev integration operators of fractional (multi-)order generated by some special functions. AIP Conf. Proc. 2018, 2048, 050016. [Google Scholar] [CrossRef]
- Samko, S.; Kilbas, A.; Marichev, O. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: Boston, MA, USA, 1999. [Google Scholar]
- Machado, J.A.T.; Kiryakova, V. Recent history of the fractional calculus: Data and statistics. In Handbook of Fractional Calculus with Applications. Volume 1: Basic Theory; Kochubei, A., Luchko, Y., Eds.; De Gryuter: Berlin, Germany, 2019; Chapter 1; pp. 1–21. [Google Scholar] [CrossRef]
- Sneddon, I.N. The use in mathematical analysis of Erdélyi-Kober operators and some of their applications. In Fractional Calculus and Its Applications, Proceedings of the International Conference, New Haven, CT, USA, June 1974; Ross, B., Ed.; Lecture Notes in Mathematics; Springer: New York, NY, USA, 1975; Volume 457, pp. 37–79. [Google Scholar]
- Kiryakova, V. Unified approach to fractional calculus images of special functions—A survey. Mathematics 2020, 8, 2260. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Lyn, S.-D.; Wang, P.-Y. Some fractional-calculus results for the H¯-function associated with a class of Feynman integrals. Russ. J. Math. Phys. 2006, 13, 94–100. [Google Scholar]
- Kalla, S.L. Operators of Fractional Integration; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1980; Volume 798, pp. 258–280. [Google Scholar]
- Kiryakova, V. A brief story about the operators of the generalized fractional calculus. Fract. Calc. Appl. Anal. 2008, 11, 203–220. [Google Scholar]
- Kiryakova, V. Generalized fractional calculus operators with special functions. In Handbook of Fractional Calculus with Applications. Volume 1: Basic Theory; Kochubei, A., Luchko, Y., Eds.; De Gryuter: Berlin, Germany, 2019; Chapter 4; pp. 87–110. [Google Scholar] [CrossRef]
- Kiryakova, V.; Luchko, Y. Riemann-Liouville and Caputo type multiple Erdélyi-Kober operators. Cent. Eur. J. Phys. 2013, 11, 1314–1336. [Google Scholar] [CrossRef]
- Dzrbashjan, M.M. Integral Transforms and Representations in the Complex Domain; Nauka: Moscow, Russia, 1966. (In Russian) [Google Scholar]
- Karp, D.; López, J.L. On a particular class of Meijer’s G functions appearing in fractional calculus. Int. J. Appl. Math. 2018, 31, 521–543. [Google Scholar] [CrossRef]
- Karp, D.; Prilepkina, E. Completely monotonic gamma ratio and infinitely divisible H-function of Fox. Comput. Methods Funct. Theory 2016, 16, 135–153. [Google Scholar] [CrossRef]
- Vellaisamy, P.; Kataria, K.K. The I-function distribution and its extensions. Teoria Veroyatnostej i ee Primenenia (Russ. Ed.) 2018, 63, 284–305. (In Russian) [Google Scholar] [CrossRef]
- Pogány, T. Integral form of Le Roy-type hypergeometric function. Integral Transform. Spec. Funct. 2018, 29, 580–584. [Google Scholar] [CrossRef]
- Kiryakova, V. Fractional calculus operators of special functions?—The result is well predictable! Chaos Solitons Fractals 2017, 102, 2–15. [Google Scholar] [CrossRef]
- Krätzel, E. Differentiationssätze der L-Transformation under Differentiagleichungen nach dem Operator. Math. Machrichten 1967, 35, 105–114. [Google Scholar] [CrossRef]
- Krätzel, E. Integral transformations of Bessel type. In Generalized Functions and Operational Calculus (Proc. Conf. Varna 1975); Bulgarian Academy of Sciences: Sofia, Bulgaria, 1979; pp. 148–155. [Google Scholar]
- Kilbas, A.A.; Saxena, R.K.; Trujillo, J.J. Krätzel function as a function of hypergeometric type. Fract. Calc. Appl. Anal. 2006, 9, 109–131. [Google Scholar]
- Dimovski, I.; Kiryakova, V. The Obrechkoff integral transform: Properties and relation to a generalized fractional calculus. Numer. Funct. Anal. Optimiz. 2000, 21, 121–144. [Google Scholar] [CrossRef]
- Kiryakova, V. From the hyper-Bessel operators of Dimovski to the generalized fractional calculus. Fract. Calc. Appl. Anal. 2014, 17, 977–1000. [Google Scholar] [CrossRef]
- Dimovski, I. Operational calculus for a class of differental operators. C. R. Acad. Bulg. Sci. 1966, 19, 1111–1114. [Google Scholar]
- Mainardi, F. A tutorial on the basic special functions of fractional calculus. WSEAS Trans. Math. 2020, 19, 74–98. [Google Scholar] [CrossRef]
- Delerue, P. Sur le calcul symboloque à n variables et fonctions hyperbesseliennes (II). Ann. Soc. Sci. Brux. Ser. 1 1953, 3, 229–274. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Rogosin, S. On the generalized Mittag-Leffler type function. Integral Transform. Spec. Funct. 1998, 7, 215–224. [Google Scholar] [CrossRef]
- Droghei, R. Properties of the multi-index special function Wα¯,ν¯(z). Fract. Calc. Appl. Anal. 2023, 26, 2057–2068. [Google Scholar] [CrossRef]
- Kiryakova, V. Fractional calculus of some “new” but not new special functions: k-, multi-index-, and S-analogues. AIP Conf. Proc. 2019, 2172, 050008. [Google Scholar] [CrossRef]
- Bazhlekova, E. Completely monotone multinomial Mittag-Leffler type functions and diffusion equations with multiple time-derivatives. Fract. Calc. Appl. Anal. 2021, 24, 88–111. [Google Scholar] [CrossRef]
- Gupta, K.C.; Soni, R.C. New properties of the hypergeometric series associated with Feynman integrals. Kyungpook Math. J. 2001, 41, 97–104. [Google Scholar]
- Jolly, N. New Investigations in Integral Transforms and Fractional Integral Operators Involving Generalized Extended Mittag-Leffer Function and Extended Hurwitz Lerch Zeta Function with Applications to the Solution of Fractional Differential Equations. Ph.D. Thesis, Malaviya National Institute of Technology, Jaipur, India, 2019. [Google Scholar]
- Srivastava, H.M. An introductory overwiew of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions. J. Adv. Eng. Comput. 2021, 5, 135–166. [Google Scholar] [CrossRef]
- Gerhold, S.; Tomovski, Ž. Asymptotic expansion of Mathieu power series and trigonometric Mathieu series. J. Math. Anal. Appl. 2019, 479, 1882–1892. [Google Scholar] [CrossRef]
- Stivastava, H.M.; Saxena, R.K.; Pogány, T.; Saxena, R. Integral and computational representations of the extended Hurwiz-Lerch zeta function. Integral Transform. Spec. Funct. 2011, 22, 487–506. [Google Scholar] [CrossRef]
- Bhatter, S.; Faisal, S.M.; Qureshi, M.I. A family of Mittag-Leffelr type functions and their properties. Palest. J. Math. 2015, 4, 367–373. [Google Scholar]
- Schilling, R.L.; Song, R.; Vondraček, Z. Bernstein Functions: Theory and Applications, 2nd ed.; De Gruyter: Berlin, Germany; Boston, MA, USA, 2012. [Google Scholar]
- Berg, C.; Çetinkaya, A.; Karp, D. Completely monotonic ratios of basic and ordinary gamma functions. Aequat. Math. 2021, 95, 569–588. [Google Scholar] [CrossRef]
- Gerhold, S. On some non-holonomic equences. Electr. J. Comb. 2004, 11, R87. [Google Scholar] [CrossRef]
- Bell, J.P.; Gerhold, S.; Klazar, M.; Luca, F. Non-holonomicity of sequences defined via elementary functions. arXiv 2006, arXiv:math/060514v1. [Google Scholar] [CrossRef]
- Flajolet, P.; Gerhold, S.; Salvy, B. Lindelöf representations and (non)-holonomic sequences. arXiv 2009, arXiv:0906.1957v2. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiryakova, V.; Paneva-Konovska, J. Going Next after “A Guide to Special Functions in Fractional Calculus”: A Discussion Survey. Mathematics 2024, 12, 319. https://doi.org/10.3390/math12020319
Kiryakova V, Paneva-Konovska J. Going Next after “A Guide to Special Functions in Fractional Calculus”: A Discussion Survey. Mathematics. 2024; 12(2):319. https://doi.org/10.3390/math12020319
Chicago/Turabian StyleKiryakova, Virginia, and Jordanka Paneva-Konovska. 2024. "Going Next after “A Guide to Special Functions in Fractional Calculus”: A Discussion Survey" Mathematics 12, no. 2: 319. https://doi.org/10.3390/math12020319
APA StyleKiryakova, V., & Paneva-Konovska, J. (2024). Going Next after “A Guide to Special Functions in Fractional Calculus”: A Discussion Survey. Mathematics, 12(2), 319. https://doi.org/10.3390/math12020319