OCT Retinopathy Classification via a Semi-Supervised Pseudo-Label Sub-Domain Adaptation and Fine-Tuning Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets and Processing Method
2.1.1. Deep Sub-Domain Adaptation with Pseudo-Label
2.1.2. Model Fine-Tuning Based on Deep Sub-Domain Adaptation (TLSDA)
2.2. Evaluation Metrics and Model Implementation
2.3. Experiments
2.3.1. Domain Bias Experiment
2.3.2. Unsupervised DSAN-PL Experiment
2.3.3. Semi-Supervised TLSDA Experiment
3. Results
3.1. Domain Bias Experiment Results
3.2. Unsupervised DSAN-PL Results
3.3. Semi-Supervised TLSDA Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 2018, 172, 1122–1131. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 142–158. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Gherardini, M.; Mazomenos, E.; Menciassi, A.; Stoyanov, D. Catheter segmentation in X-ray fluoroscopy using synthetic data and transfer learning with light U-nets. Comput. Methods Programs Biomed. 2020, 192, 105420. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Chen, H.; Liu, Z.; Zhang, X.; Wu, Z. Fully automated detection of retinal disorders by image-based deep learning. Graefe’s Arch. Clin. Exp. 2019, 257, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Tong, Y.; Yu, Y.; Xing, Y.; Chen, C.; Shen, Y. Deep learning-based automated classification of multi-categorical abnormalities from optical coherence tomography images. Transl. Vis. Sci. Technol. 2018, 7, 41. [Google Scholar] [CrossRef] [PubMed]
- Alqudah, A.M. AOCT-NET: A convolutional network automated classification of multiclass retinal diseases using spectral-domain optical coherence tomography images. Med. Biol. Eng. Comput. 2020, 58, 41–53. [Google Scholar] [CrossRef]
- Sedai, S.; Antony, B.; Rai, R.; Jones, K.; Ishikawa, H.; Schuman, J.; Gadi, W.; Garnavi, R. Uncertainty guided semi-supervised segmentation of retinal layers in OCT images. In Proceedings of the Medical Image Computing and Computer Assisted Intervention, Shenzhen, China, 13–17 October 2019; pp. 282–290. [Google Scholar]
- Wang, J.; Chen, Y.; Li, W.; Kong, W.; He, Y.; Jiang, C.; Shi, G. Domain adaptation model for retinopathy detection from cross-domain OCT images. In Proceedings of the Third Conference on Medical Imaging with Deep Learning, Montreal, QC, Canada, 6–8 July 2020; pp. 795–810. [Google Scholar]
- Luo, Y.; Xu, Q.; Hou, Y.; Liu, L.; Wu, M. Cross-domain retinopathy classification with optical coherence tomography images via a novel deep domain adaptation method. J. Biophotonics 2021, 14, e202100096. [Google Scholar] [CrossRef]
- Srinivasan, P.P.; Kim, L.A.; Mettu, P.S.; Cousins, S.W.; Comer, G.M.; Izatt, J.A.; Farsiu, S. Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images. Biomed. Opt. Express 2014, 5, 3568–3577. [Google Scholar] [CrossRef]
- Rasti, R.; Rabbani, H.; Mehridehnavi, A.; Hajizadeh, F. Macular OCT classification using a multi-scale convolutional neural network ensemble. IEEE Trans. Med. Imaging 2017, 37, 1024–1034. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhuang, F.; Wang, J.; Ke, G.; Chen, J.; Bian, J.; Xiong, H.; He, Q. Deep subdomain adaptation network for image classification. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-H. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In Proceedings of the Workshop on Challenges in Representation Learning, ICML, Atlanta, GA, USA, 16–21 June 2013; p. 896. [Google Scholar]
- Long, M.; Cao, Y.; Wang, J.; Jordan, M. Learning transferable features with deep adaptation networks. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 97–105. [Google Scholar]
- Ganin, Y.; Lempitsky, V. Unsupervised Domain Adaptation by Backpropagation. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; Volume 37, pp. 1180–1189. [Google Scholar]
- Sun, B.; Saenko, K. Deep coral: Correlation alignment for deep domain adaptation. In Proceedings of the Computer Vision—ECCV 2016 Workshops, Amsterdam, The Netherlands, 8–10 October 2016; pp. 443–450. [Google Scholar]
- Torralba, A.; Efros, A.A. Unbiased look at dataset bias. In Proceedings of the Conference on Computer Vision and Pattern Recognition 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 1521–1528. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Mehrabi, N.; Morstatter, F.; Saxena, N.; Lerman, K.; Galstyan, A. A survey on bias and fairness in machine learning. ACM Comput. Surv. 2021, 54, 115. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Cascante-Bonilla, P.; Tan, F.; Qi, Y.; Ordonez, V. Curriculum labeling: Revisiting pseudo-labeling for semi-supervised learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021; pp. 6912–6920. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Manzari, O.N.; Ahmadabadi, H.; Kashiani, H.; Shokouhi, S.B.; Ayatollahi, A. MedViT: A robust vision transformer for generalized medical image classification. Comput. Biol. Med. 2023, 157, 106791. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6848–6856. [Google Scholar]
- Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531. [Google Scholar]
- Sundas, A.; Badotra, S.; Bharany, S.; Almogren, A.; Tag-ElDin, E.M.; Rehman, A.U. HealthGuard: An Intelligent Healthcare System Security Framework Based on Machine Learning. Sustainability 2022, 14, 11934. [Google Scholar] [CrossRef]
- Vanschoren, J. Meta-learning: A survey. arXiv 2018, arXiv:1810.03548. [Google Scholar]
- Vettoruzzo, A.; Bouguelia, M.-R.; Vanschoren, J.; Rögnvaldsson, T.; Santosh, K. Advances and Challenges in Meta-Learning: A Technical Review. arXiv 2023, arXiv:2307.04722. [Google Scholar]
- Wang, Y.; Yao, Q.; Kwok, J.T.; Ni, L.M. Generalizing from a few examples: A survey on few-shot learning. ACM Comput. Surv. 2020, 53, 63. [Google Scholar] [CrossRef]
- Song, Y.; Wang, T.; Cai, P.; Mondal, S.K.; Sahoo, J.P. A comprehensive survey of few-shot learning: Evolution, applications, challenges, and opportunities. ACM Comput. Surv. 2023, 55, 271. [Google Scholar] [CrossRef]
- Stacke, K.; Eilertsen, G.; Unger, J.; Lundström, C. Measuring domain shift for deep learning in histopathology. IEEE J. Biomed. Health Inform. 2020, 25, 325–336. [Google Scholar] [CrossRef] [PubMed]
Models | Test | ACC (%) | Precision (%) | Recall (%) | Specificity (%) | AUC | MCC |
---|---|---|---|---|---|---|---|
Model A | A | 93.79 | 93.01 | 94.00 | 97.13 | 0.998 | 0.909 |
B | 60.06 | 62.88 | 61.44 | 79.43 | 0.790 | 0.436 | |
C | 64.37 | 66.69 | 64.37 | 82.18 | 0.808 | 0.470 | |
Model B | A | 57.91 | 66.62 | 61.55 | 80.99 | 0.772 | 0.439 |
B | 87.74 | 89.72 | 86.14 | 93.53 | 0.960 | 0.816 | |
C | 56.20 | 63.22 | 56.20 | 78.10 | 0.759 | 0.363 | |
Model C | A | 85.58 | 88.87 | 84.92 | 91.90 | 0.975 | 0.788 |
B | 67.89 | 69.42 | 69.64 | 84.46 | 0.881 | 0.537 | |
C | 93.33 | 93.41 | 93.33 | 96.67 | 0.984 | 0.900 |
Scenarios | Methods | ACC (%) | Precision (%) | Recall (%) | Specificity (%) | AUC | MCC |
---|---|---|---|---|---|---|---|
A to B | ResNet-50 | 60.06 | 62.88 | 61.44 | 79.43 | 0.790 | 0.436 |
DAN | 75.04 | 78.05 | 77.19 | 88.05 | 0.881 | 0.651 | |
DANN | 82.86 | 84.90 | 84.21 | 91.67 | 0.869 | 0.762 | |
DeepCoral | 70.29 | 73.46 | 73.10 | 85.88 | 0.895 | 0.590 | |
DSAN | 83.69 | 84.22 | 85.06 | 92.14 | 0.896 | 0.764 | |
DSAN-PL | 84.20 | 84.60 | 85.52 | 92.42 | 0.899 | 0.771 | |
A to C | ResNet-50 | 64.37 | 66.69 | 64.37 | 82.18 | 0.808 | 0.470 |
DAN | 82.83 | 84.49 | 82.83 | 91.42 | 0.936 | 0.750 | |
DANN | 87.30 | 89.02 | 87.30 | 93.65 | 0.958 | 0.818 | |
DeepCoral | 80.27 | 81.71 | 80.27 | 90.13 | 0.929 | 0.711 | |
DSAN | 95.17 | 95.18 | 95.17 | 97.58 | 0.970 | 0.928 | |
DSAN-PL | 95.35 | 95.33 | 95.33 | 97.67 | 0.973 | 0.930 | |
B to C | ResNet-50 | 56.20 | 63.22 | 56.20 | 78.10 | 0.759 | 0.363 |
DAN | 81.50 | 84.85 | 81.50 | 90.75 | 0.929 | 0.741 | |
DANN | 89.77 | 90.96 | 89.77 | 94.88 | 0.954 | 0.854 | |
DeepCoral | 80.83 | 84.14 | 80.83 | 90.42 | 0.959 | 0.729 | |
DSAN | 95.43 | 95.71 | 95.43 | 97.72 | 0.980 | 0.933 | |
DSAN-PL | 96.20 | 96.36 | 96.20 | 98.10 | 0.984 | 0.944 |
Dataset | Test | ACC (%) | Precision (%) | Recall (%) | Specificity (%) | AUC | MCC |
---|---|---|---|---|---|---|---|
No-TL | 43.19 | 52.00 | 38.74 | 69.83 | 0.550 | 0.156 | |
B | TL-ImageNet | 83.63 | 83.75 | 82.05 | 91.60 | 0.952 | 0.752 |
TL-OCT | 88.90 | 89.47 | 89.15 | 94.31 | 0.952 | 0.834 | |
TLSDA | 93.63 | 93.73 | 93.74 | 96.74 | 0.990 | 0.903 | |
No-TL | 39.15 | 30.73 | 39.15 | 69.57 | 0.550 | 0.103 | |
C | TL-ImageNet | 82.37 | 83.12 | 82.37 | 91.19 | 0.933 | 0.739 |
TL-OCT | 88.56 | 89.08 | 88.56 | 94.28 | 0.972 | 0.831 | |
TLSDA | 96.59 | 96.61 | 96.59 | 98.30 | 0.995 | 0.949 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, Z.; Zhang, Q.; Lan, G.; Xu, J.; Ou, C.; An, L.; Qin, J.; Huang, Y. OCT Retinopathy Classification via a Semi-Supervised Pseudo-Label Sub-Domain Adaptation and Fine-Tuning Method. Mathematics 2024, 12, 347. https://doi.org/10.3390/math12020347
Tan Z, Zhang Q, Lan G, Xu J, Ou C, An L, Qin J, Huang Y. OCT Retinopathy Classification via a Semi-Supervised Pseudo-Label Sub-Domain Adaptation and Fine-Tuning Method. Mathematics. 2024; 12(2):347. https://doi.org/10.3390/math12020347
Chicago/Turabian StyleTan, Zhicong, Qinqin Zhang, Gongpu Lan, Jingjiang Xu, Chubin Ou, Lin An, Jia Qin, and Yanping Huang. 2024. "OCT Retinopathy Classification via a Semi-Supervised Pseudo-Label Sub-Domain Adaptation and Fine-Tuning Method" Mathematics 12, no. 2: 347. https://doi.org/10.3390/math12020347
APA StyleTan, Z., Zhang, Q., Lan, G., Xu, J., Ou, C., An, L., Qin, J., & Huang, Y. (2024). OCT Retinopathy Classification via a Semi-Supervised Pseudo-Label Sub-Domain Adaptation and Fine-Tuning Method. Mathematics, 12(2), 347. https://doi.org/10.3390/math12020347