State-of-the-Art Results with the Fashion-MNIST Dataset
Abstract
:1. Introduction
2. Related Works
3. Fashion-MNIST Dataset
4. Methods
- Loading the dataset;
- Standard preprocessing in the form of normalisation and dimensionality transformation to input in the convolutional network;
- Connecting the augmenter and configuring it accordingly;
- Training and evaluating the model results.
5. Obtained Results
- model accuracy is based on literature data
- model accuracy is without image augmentation
- model accuracy is using data augmentation.
6. Discussion of the Results
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Parameters of ImageDataGenerator
Parameters | Description |
---|---|
Rescale | The parameter allows for scaling the pixel values of the image. For example, rescale = 1/255 normalises the pixel values to a range of 0 to 1 |
Rotation_range | The angle in degrees by which you can rotate the images randomly (Rotation_range = 0.75) |
Width_shift_range and height_shift_range | The range of horizontal and vertical image shifts. Allows for creating random shifts of images (height_shift_range = 0.075, width_shift_range = 0.075) |
Brightness_range | The range of image brightness variation |
Zoom_range | Range of random image scaling (zoom_range = 0.085) |
Horizontal_flip и vertical_flip | Flips the image horizontally or vertically with a certain probability |
Featurewise_center и samplewise_center | Normalisation of data by standard deviation of features or by individual samples |
Zca_whitening | Application of ZCA whitening to reduce the correlation between pixels |
Target_size | Size of the target images after transformations |
Color_mode | Colour format of the input images (for example, “rgb” or “grayscale”) |
Batch_size | Number of images processed per iteration |
References
- LeCun, Y. The MNIST Database of Handwritten Digits. 1998. Available online: http://yann.lecun.com/exdb/mnist/ (accessed on 2 August 2024).
- Yadav, C.; Bottou, L. Cold Case: The Lost MNIST Digits. Advances in Neural Information Processing Systems. Curran Associates, Inc. arXiv 2019, arXiv:1905.10498. [Google Scholar]
- Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms. arXiv 2017, arXiv:1708.07747. [Google Scholar]
- Leithardt, V. Classifying garments from fashion-MNIST dataset through CNNs. Advances in Science. Technol. Eng. Syst. J. 2021, 6, 989–994. [Google Scholar]
- Shen, S. Image classification of Fashion-MNIST dataset using long short-term memory networks. Res. Sch. Comput. Sci. 2018. Available online: https://users.cecs.anu.edu.au/~Tom.Gedeon/conf/ABCs2018/paper/ABCs2018_paper_38.pdf (accessed on 30 August 2024).
- Samia, B.; Soraya, Z.; Malika, M. Fashion images classification using machine learning, deep learning and transfer learning models. In Proceedings of the 2022 7th International Conference on Image and Signal Processing and their Applications (ISPA), Mostaganem, Algeria, 8–9 May 2022; IEEE: New York, NY, USA; pp. 1–5. [Google Scholar]
- Nocentini, O.; Kim, J.; Bashir, M.; Cavallo, F. Image classification using multiple convolutional neural networks on the fashion-MNIST dataset. Sensors 2022, 22, 9544. [Google Scholar] [CrossRef] [PubMed]
- Rohrmanstorfer, S.; Komarov, M.; Mödritscher, F. Image Classification for the Automatic Feature Extraction in Human Worn Fashion Data. Mathematics 2021, 9, 624. [Google Scholar] [CrossRef]
- Kiapour, M.; Yamaguchi, K.; Berg, A.; Berg, T. Hipster wars: Discovering elements of fashion styles. In Proceedings of the Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Proceedings, I. pp. 472–488. [Google Scholar]
- Chen, J.C.; Liu, C.F. Deep net architectures for visual-based clothing image recognition on large database. Soft Comput. 2017, 21, 2923–2939. [Google Scholar] [CrossRef]
- Bossard, L.; Dantone, M.; Leistner, C.; Wengert, C.; Quack, T.; Van Gool, L. Apparel classification with style. In Proceedings of the Computer Vision–ACCV 2012: 11th Asian Conference on Computer Vision, Daejeon, Republic of Korea, 5–9 November 2012; Revised Selected Papers, IV. pp. 321–335. [Google Scholar]
- Donati, L.; Iotti, E.; Mordonini, G.; Prati, A. Fashion Product Classification through Deep Learning and Computer Vision. Appl. Sci. 2019, 9, 1385. [Google Scholar] [CrossRef]
- Liu, Z.; Luo, P.; Qiu, S.; Wang, X.; Tang, X. Deepfashion: Powering robust clothes recognition and retrieval with rich annotations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1096–1104. [Google Scholar]
- An, H.; Lee, K.; Choi, Y.; Park, M. Conceptual framework of hybrid style in fashion image datasets for machine learning. Fash. Text. 2023, 10, 18. [Google Scholar] [CrossRef]
- Becker, K. Image Recognition for Fashion with Machine Learning. 2017. Available online: https://www.primaryobjects.com/kory-becker/ (accessed on 2 August 2024).
- Shubathra, S.; Kalaivaani, P.; Santhoshkumar, S. Clothing image recognition based on multiple features using deep neural networks. In Proceedings of the 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 2–4 July 2020; IEEE: New York, NY, USA; pp. 166–172. [Google Scholar]
- Bhatnagar, S.; Ghosal, D.; Kolekar, M. Classification of fashion article images using convolutional neural networks. In Proceedings of the 2017 Fourth International Conference on Image Information Processing (ICIIP), Shimla, India, 21–23 December 2017; IEEE: New York, NY, USA; pp. 1–6. [Google Scholar] [CrossRef]
- Shin, S.Y.; Jo, G.; Wang, G. A novel method for fashion clothing image classification based on deep learning. J. Inf. Commun. Technol. 2023, 22, 127–148. [Google Scholar]
- Meshkini, K.; Platos, J.; Ghassemain, H. An Analysis of Convolutional Neural Network for Fashion Images Classification (Fashion-MNIST). In Proceedings of the Fourth International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’19). IITI 2019; Advances in Intelligent Systems and Computing; Kovalev, S., Tarassov, V., Snasel, V., Sukhanov, A., Eds.; Springer: Cham, Switzerland, 2020; Volume 1156, pp. 85–95. [Google Scholar] [CrossRef]
- Nguyen, M.; Nguyen, H. Clothing Classification Using Shallow Convolutional Neural Networks. In Biomedical and Other Applications of Soft Computing; Springer: Cham, Switzerland, 2022; pp. 239–250. [Google Scholar]
- Greeshma, K.V.; Sreekumar, K. Hyperparameter Optimization and Regularization on Fashion-MNIST. Classif. Int. J. Recent T Echnology Eng. 2019, 8, 3713–3719. [Google Scholar]
- Seo, Y.; Shin, K. Hierarchical convolutional neural networks for fashion image classification. Expert Syst. Appl. 2019, 116, 328–339. [Google Scholar] [CrossRef]
- Vijayaraj, A.; Vasanth Raj, P.; Jebakumar, R.; Gururama Senthilvel, P.; Kumar, N.; Suresh Kumar, R.; Dhanagopal, R. Deep learning image classification for fashion design. Wirel. Commun. Mob. Comput. 2022, 2022, 7549397. [Google Scholar] [CrossRef]
- Kayed, M.; Anter, A.; Mohamed, H. Classification of Garments from Fashion MNIST Dataset Using CNN LeNet-5 Architecture. In Proceedings of the 2020 International Conference on Innovative Trends in Communication and Computer Engineering (ITCE 2020), Aswan, Egypt, 8–9 February 2020; pp. 238–243. [Google Scholar]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Quinlan, J. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef]
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [Google Scholar] [CrossRef]
- Bayes, T. An essay towards solving a problem in the doctrine of chances. Biometrika 1958, 45, 296–315. [Google Scholar] [CrossRef]
- Fix, E. Discrimination Analysis: Nonparametric Discrimination, Consistency Properties; US Air Force School of Aviation Medicine, University of Iowa: Iowa City, IA, USA, 1985; Volume 1, p. 42. [Google Scholar]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3149–3157. [Google Scholar]
- Khan, S.; Naseer, M.; Hayat, M.; Zamir, S.W.; Khan, F.S.; Shah, M. Transformers in vision: A survey. ACM Comput. Surv. (CSUR) 2022, 54, 1–41. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Mukhamediev, R.; Kuchin, Y.; Yunicheva, N.; Kalpeyeva, Z.; Muhamedijeva, E.; Gopejenko, V.; Rystygulov, P. Classification of Logging Data Using Machine Learning Algorithms. Appl. Sci. 2024, 14, 7779. [Google Scholar] [CrossRef]
Model | Accuracy | Reference |
---|---|---|
Boosted Trees (GBM/XGBoost) | 85.3 | [15] |
DecisionTreeClassifier | 79.8 | [3] |
ExtraTreeClassifier | 77.5 | [3] |
GaussianNB | 51.1 | [3] |
KNeighborsClassifier | 85.4 | [3] |
Linear support vector classificator (SVC) | 83.6 | [3] |
LogisticRegression | 84.2 | [3] |
MLPClassifier | 87.1 | [3] |
RandomForestClassifier | 87.3 | [3] |
SVC | 89.7 | [3] |
Long short-term memory (LSTM) | 88.26 | [5] |
Extreme learning machines (ELMs) | 97 | [16] |
Two-layer convolution neural network (CNN) along with Batch Normalization and Skip Connections | 92.54 | [17] |
CNN | 93 | [18] |
CNN | 93.43 | [19] |
Shallow CNN | 93.59 | [20] |
CNN4 + HPO + Reg | 93.99 | [21] |
VGG16 H-CNN | 93.52 | [22] |
VGG19 H-CNN | 93.33 | [22] |
CNN using Adam | 94.52 | [23] |
CNN LeNet-5 | 98 | [24] |
CNN-dropout-3 | 99.1 | [4] |
CNN-2-128 with image augmentation | 99.65 | This article |
Classifiers | Accuracy | Model | ||
---|---|---|---|---|
1 | 2 | 3 | ||
XGBoost [25] | 85.3 | 90 | 88 | Xgboost.XGBClassifier (nthread = 8) |
DecisionTree [26] | 79.8 | 79 | 78 | DecisionTreeClassifier () |
ExtraTree [27] | 77.5 | 88 | 87 | ExtraTreesClassifier () |
GaussianNB [28] | 51.1 | 59 | 51 | GaussianNB () |
KNeighbors [29] | 85.4 | 86 | 85 | KNeighborsClassifier (n_neighbors = 5) |
LogisticRegression | 84.2 | 84 | 81 | LogisticRegression () |
MLP [30] | 87.1 | 88 | 88 | MLPClassifier (random_state = 1, max_iter = 100) |
RandomForest [31] | 87.3 | 88 | 87 | RandomForestClassifier (max_depth = 24, n_estimators = 200, random_state = 0) |
SVC [32] | 89.7 | 88 | 88 | SVC () |
LightGBM [33] | - | 89 | 88 | Lgb.LGBMClassifier () |
НЕМ | 89.56 | 88 | HEM (MLP, XGBoost, LightGBM) | |
SEM | 89.38 | 88 | SEM (MLP, XGBoost, LightGBM) | |
CNN-3-128 | - | 99.44 | 99.65 | Figure 3 |
Trainable Params | Accuracy | Duration | Epochs | |
---|---|---|---|---|
0 | 2,067,850 | 98.93000126 | 27.1199 | 2 |
1 | 2,067,850 | 99.29999709 | 74.6918 | 6 |
2 | 2,067,850 | 99.50000048 | 171.9928 | 14 |
3 | 2,067,850 | 99.50000048 | 367.5888 | 30 |
4 | 665,994 | 98.60000014 | 23.83484 | 2 |
5 | 665,994 | 99.29000139 | 69.86871 | 6 |
6 | 665,994 | 99.4599998 | 161.6529 | 14 |
7 | 665,994 | 99.63999987 | 344.0873 | 30 |
8 | 241,546 | 98.36000204 | 22.68729 | 2 |
9 | 241,546 | 99.12999868 | 67.69684 | 6 |
10 | 241,546 | 99.41999912 | 159.3603 | 14 |
11 | 241,546 | 99.57000017 | 363.4666 | 30 |
12 | 98,442 | 97.20000029 | 26.68739 | 2 |
13 | 98,442 | 98.62999916 | 79.62128 | 6 |
14 | 98,442 | 99.150002 | 176.73 | 14 |
15 | 98,442 | 99.30999875 | 355.7232 | 30 |
16 | 44,170 | 94.80000138 | 22.48629 | 2 |
17 | 44,170 | 97.46000171 | 67.65492 | 6 |
18 | 44,170 | 98.60000014 | 151.3534 | 14 |
19 | 44,170 | 98.87999892 | 317.5392 | 30 |
20 | 21,354 | 88.24999928 | 21.7845 | 2 |
21 | 21,354 | 94.34000254 | 64.72898 | 6 |
22 | 21,354 | 96.28000259 | 153.8319 | 14 |
23 | 21,354 | 97.13000059 | 323.0054 | 30 |
24 | 11,026 | 80.54999709 | 21.66025 | 2 |
25 | 11,026 | 86.82000041 | 63.86706 | 6 |
26 | 11,026 | 91.26999974 | 147.3278 | 14 |
27 | 11,026 | 93.16999912 | 309.7974 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukhamediev, R.I. State-of-the-Art Results with the Fashion-MNIST Dataset. Mathematics 2024, 12, 3174. https://doi.org/10.3390/math12203174
Mukhamediev RI. State-of-the-Art Results with the Fashion-MNIST Dataset. Mathematics. 2024; 12(20):3174. https://doi.org/10.3390/math12203174
Chicago/Turabian StyleMukhamediev, Ravil I. 2024. "State-of-the-Art Results with the Fashion-MNIST Dataset" Mathematics 12, no. 20: 3174. https://doi.org/10.3390/math12203174
APA StyleMukhamediev, R. I. (2024). State-of-the-Art Results with the Fashion-MNIST Dataset. Mathematics, 12(20), 3174. https://doi.org/10.3390/math12203174