Predicting Factor of Safety of Slope Using an Improved Support Vector Machine Regression Model
Abstract
:1. Introduction
2. Dataset Construction and Model Evaluation Metrics
2.1. Input and Output Features
2.2. Model Evaluation Metrics
3. Methodology
3.1. Support Vector Machine Regression
3.2. Hyperparameter Optimization
4. Results and Discussion
4.1. Results of the Hyperparameters
4.2. Results of the Improved SVR Model
4.3. Validation of the Performance
4.4. Feature Importance Score
4.5. Contribution and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aivaz, K.A.; Munteanu, I.F.; Jakubowicz, F.V. Bitcoin in conventional markets: A study on blockchain-induced reliability, investment slopes, financial and accounting aspects. Mathematics 2023, 11, 4508. [Google Scholar] [CrossRef]
- Liu, L.L.; Dou, Y.M.; Qiao, J.G. Evaluation method of highway plant slope based on rough set theory and analytic hierarchy process: A case study in Taihang Mountain, Hebei, China. Mathematics 2022, 10, 1264. [Google Scholar] [CrossRef]
- Ngo, P.T.T.; Panahi, M.; Khosravi, K.; Ghorbanzadeh, O.; Kariminejad, N.; Cerda, A.; Lee, S. Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran. Geosci. Front. 2021, 12, 505–519. [Google Scholar] [CrossRef]
- Zhang, J.R.; Tang, H.M.; Tannant, D.D.; Lin, C.Y.; Xia, D.; Liu, X.; Zhang, Y.Q.; Ma, J.W. Combined forecasting model with CEEMD-LCSS reconstruction and the ABC-SVR method for landslide displacement prediction. J. Clean. Prod. 2021, 293, 126205. [Google Scholar] [CrossRef]
- Lin, H.; Feng, J.J.; Cao, R.H.; Xie, S.J. Comparative analysis of rock damage models based on different distribution functions. Geotech. Geol. Eng. 2022, 40, 301–310. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Kariminejad, N.; Gayen, A.; Komac, M. Statistical functions used for spatial modelling due to assessment of landslide distribution and landscape-interaction factors in Iran. Geosci. Front. 2020, 11, 1257–1269. [Google Scholar] [CrossRef]
- Xie, S.; Lin, H.; Duan, H.; Liu, H.; Liu, B. Numerical study on cracking behavior and fracture failure mechanism of fractured rocks under shear loading. Comp. Part. Mech. 2024, 11, 903–920. [Google Scholar] [CrossRef]
- Gui, J.-Y.; González-Fernández, M.A.; Estévez-Ventosa, X.; Song, F.; Alejano, L.R. Toppling susceptibility of a single rock block resting on a regularly rough base. Eng. Geol. 2023, 313, 106982. [Google Scholar] [CrossRef]
- Kardani, N.; Zhou, A.; Nazem, M.; Shen, S.-L. Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data. J. Rock. Mech. Geotech. 2021, 13, 188–201. [Google Scholar] [CrossRef]
- Terzaghi, K. Mechanism of landslides. In Application of Geology to Engineering Practice; Geological Society of America: Boulder, CO, USA, 1950. [Google Scholar]
- Rukhaiyar, S.; Alam, M.N.; Samadhiya, N.K. A PSO-ANN hybrid model for predicting factor of safety of slope. Int. J. Geotech. Eng. 2018, 12, 556–566. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Z.; Wang, N.; Sun, P.; Yu, S.; Li, S.; Du, X. Modeling lateral enlargement in dam breaches using slope stability analysis based on circular slip mode. Eng. Geol. 2016, 209, 70–81. [Google Scholar] [CrossRef]
- Faramarzi, L.; Zare, M.; Azhari, A.; Tabaei, M. Assessment of rock slope stability at Cham-Shir Dam Power Plant pit using the limit equilibrium method and numerical modeling. Bull. Eng. Geol. Environ. 2017, 76, 783–794. [Google Scholar] [CrossRef]
- Duncan, J.M. state of the art: Limit equilibrium and finite-element analysis of slopes. Int. J. Geotech. Eng. 1996, 122, 577–596. [Google Scholar] [CrossRef]
- Duncan, J. Slope stability then and now. In Geo-Congress 2013: Stability and Performance of Slopes and Embankments III; American Society of Civil Engineers: Reston, VA, USA, 2013; pp. 2184–2203. [Google Scholar] [CrossRef]
- Erzin, Y.; Cetin, T. The prediction of the critical factor of safety of homogeneous finite slopes using neural networks and multiple regressions. Comput. Geosci. 2013, 51, 305–313. [Google Scholar] [CrossRef]
- Song, Y.; Gong, J.; Gao, S.; Wang, D.; Cui, T.; Li, Y.; Wei, B. Susceptibility assessment of earthquake-induced landslides using Bayesian network: A case study in Beichuan, China. Comput. Geosci. 2012, 42, 189–199. [Google Scholar] [CrossRef]
- Li, D.-Q.; Xiao, T.; Cao, Z.-J.; Phoon, K.-K.; Zhou, C.-B. Efficient and consistent reliability analysis of soil slope stability using both limit equilibrium analysis and finite element analysis. Appl. Math. Model. 2016, 40, 5216–5229. [Google Scholar] [CrossRef]
- Gong, W.; Bowa, V.M.; Zhao, C.; Cheng, Z.; Zhang, L. Footwall rock slope stability evaluations at Nchanga Open Pit Mine, Zambia. Geotech. Geol. Eng. 2021, 39, 5753–5765. [Google Scholar] [CrossRef]
- Zhou, Y.; Zou, p.; Wang, F.; Liu, Z.; Hu, W.; Ma, Z. Study on high and steep slope stability and slope angle optimization of open-pit based on limit equilibrium and numerical simulation. Geotech. Geol. Eng. 2020, 38, 5737–5753. [Google Scholar] [CrossRef]
- Spencer, E. A method of analysis of stability of embankments assuming parallel inter-slice forces. Geotechnique 1967, 17, 11–26. [Google Scholar] [CrossRef]
- Tsiampousi, A.; Zdravkovic, L.; Potts, D.M. Numerical study of the effect of soil- atmosphere interaction on the stability and serviceability of cut slopes in London clay. Can. Geotech. J. 2017, 54, 405–418. [Google Scholar] [CrossRef]
- Wu, J.-H.; Hsieh, P.-H. Simulating the postfailure behavior of the seismically- triggered Chiu-fen-erh-shan landslide using 3DEC. Eng. Geol. 2021, 287, 106113. [Google Scholar] [CrossRef]
- Chand, K.; Koner, R. failure zone identification and slope stability analysis of mine dump based on realistic 3D numerical modeling. Geotech. Geol. Eng. 2024, 42, 543–560. [Google Scholar] [CrossRef]
- Qi, C.; Tang, X. Slope stability prediction using integrated metaheuristic and machine learning approaches: A comparative study. Comput. Ind. Eng. 2018, 118, 112–122. [Google Scholar] [CrossRef]
- Kang, F.; Xu, B.; Li, J.; Zhao, S. Slope stability evaluation using Gaussian processes with various covariance functions. Appl. Soft Comput. 2017, 60, 387–396. [Google Scholar] [CrossRef]
- Huang, F.; Yin, K.; Huang, J.; Gui, L.; Wang, P. Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine. Eng. Geol. 2017, 223, 11–22. [Google Scholar] [CrossRef]
- Erener, A.; Mutlu, A.; Sebnem Düzgün, H. A comparative study for landslide susceptibility mapping using GIS-based multi-criteria decision analysis (MCDA), logistic regression (LR) and association rule mining (ARM). Eng. Geol. 2016, 203, 45–55. [Google Scholar] [CrossRef]
- Bregoli, F.; Medina, V.; Chevalier, G.; Hürlimann, M.; Bateman, A. Debris-flow susceptibility assessment at regional scale: Validation on an alpine environment. Landslides 2015, 12, 437–454. [Google Scholar] [CrossRef]
- Tang, Y.; Feng, F.; Guo, Z.; Feng, W.; Li, Z.; Wang, J.; Sun, Q.; Ma, H.; Li, Y. Integrating principal component analysis with statistically-based models for analysis of causal factors and landslide susceptibility mapping: A comparative study from the loess plateau area in Shanxi (China). J. Clean. Prod. 2020, 277, 124159. [Google Scholar] [CrossRef]
- Achu, A.L.; Aju, C.D.; Di Napoli, M.; Prakash, P.; Gopinath, G.; Shaji, E.; Chandra, V. Machine-learning based landslide susceptibility modelling with emphasis on uncertainty analysis. Geosci. Front. 2023, 14, 101657. [Google Scholar] [CrossRef]
- Gupta, S.K.; Shukla, D.P. Handling data imbalance in machine learning based landslide susceptibility mapping: A case study of Mandakini River Basin, North-Western Himalayas. Landslides 2023, 20, 933–949. [Google Scholar] [CrossRef]
- Cevik, A.; Kurtoglu, A.E.; Bilgehan, M.; Gülsan, M.E.; Albegmprli, H.M. Support vector machines in structural engineering: A review. J. Civ. Eng. Manag. 2015, 21, 261–281. [Google Scholar] [CrossRef]
- Xie, S.; Jiang, Z.; Lin, H.; Ma, T.; Peng, K.; Liu, H.; Liu, B. A new integrated intelligent computing paradigm for predicting joints shear strength. Geosci. Front. 2024, 15, 101884. [Google Scholar] [CrossRef]
- Selçuk, L.; Yabalak, E. Evaluation of the ratio between uniaxial compressive strength and Schmidt hammer rebound number and its effectiveness in predicting rock strength. Nondestruct. Test. Eva 2015, 30, 1–12. [Google Scholar] [CrossRef]
- Cho, Y.S.; Hong, S.U.; Lee, M.S. The assessment of the compressive strength and thickness of concrete structures using nondestructive testing and an artificial neural network. Nondestruct. Test. Eva 2009, 24, 277–288. [Google Scholar] [CrossRef]
- Palczynski, K.; Skibicki, D.; Pejkowski, L.; Andrysiak, T. Application of machine learning methods in multiaxial fatigue life prediction. Fatigue Fract. Eng. Mater. 2023, 46, 416–432. [Google Scholar] [CrossRef]
- Ince, R. Artificial neural network-based analysis of effective crack model in concrete fracture. Fatigue Fract. Eng. Mater. 2010, 33, 595–606. [Google Scholar] [CrossRef]
- Ahmed, B.; Park, T.; Jeon, J.-S. Blast response and damage assessment of reinforced concrete slabs using convolutional neural networks. Int. J. Damage Mech. 2023, 10567895231204640. [Google Scholar] [CrossRef]
- Wu, Y.Q.; Zhang, J.; Gao, C.H.; Xu, J.D. Internal defect detection quantification and three-dimensional localization based on impact echo and classification learning model. Measurement 2023, 218, 113153. [Google Scholar] [CrossRef]
- Sun, Z.; Li, Y.; Su, L.; Niu, D.; Luo, D.; He, W.; Xie, S. Investigation of electrical resistivity for fiber-reinforced coral aggregate concrete. Constr. Build. Mater. 2024, 414, 135011. [Google Scholar] [CrossRef]
- Sun, Z.; Li, Y.; Yang, Y.; Su, L.; Xie, S. Splitting tensile strength of basalt fiber reinforced coral aggregate concrete: Optimized XGBoost models and experimental validation. Constr. Build. Mater. 2024, 416, 135133. [Google Scholar] [CrossRef]
- Fang, K.; Tang, H.; Li, C.; Su, X.; An, P.; Sun, S. Centrifuge modelling of landslides and landslide hazard mitigation: A review. Geosci. Front. 2023, 14, 101493. [Google Scholar] [CrossRef]
- Feng, X.-T. Introduction of Intelligent Rock Mechanics; Science Press: Beijing, China, 2000; pp. 239–241. [Google Scholar]
- Zhao, H.; Yin, S.; Ru, Z. Relevance vector machine applied to slope stability analysis. Int. J. Numer. Anal. Met. 2012, 36, 643–652. [Google Scholar] [CrossRef]
- Manouchehrian, A.; Gholamnejad, J.; Sharifzadeh, M. Development of a model for analysis of slope stability for circular mode failure using genetic algorithm. Environ. Earth Sci. 2014, 71, 1267–1277. [Google Scholar] [CrossRef]
- Chang, Z.; Catani, F.; Huang, F.; Liu, G.; Meena, S.R.; Huang, J.; Zhou, C. Landslide susceptibility prediction using slope unit-based machine learning models considering the heterogeneity of conditioning factors. J. Rock. Mech. Geotech. 2023, 15, 1127–1143. [Google Scholar] [CrossRef]
- Bardhan, A.; Samui, P. Application of Artificial Intelligence Techniques in Slope Stability Analysis: A Short Review and Future Prospects. Int. J. Geotech. Earthq. Eng. 2022, 13, 1–23. [Google Scholar] [CrossRef]
- Dimitraki, L.; Christaras, B.; Marinos, V.; Vlahavas, I.; Arampelos, N. Predicting the average size of blasted rocks in aggregate quarries using artificial neural networks. Bull. Eng. Geol. Environ. 2019, 78, 2717–2729. [Google Scholar] [CrossRef]
- Li, E.; Yang, F.; Ren, M.; Zhang, X.; Zhou, J.; Khandelwal, M. Prediction of blasting mean fragment size using support vector regression combined with five optimization algorithms. J. Rock. Mech. Geotech. 2021, 13, 1380–1397. [Google Scholar] [CrossRef]
- Lin, Y.; Zhou, K.; Li, J. Prediction of Slope Stability Using Four Supervised Learning Methods. IEEE Access 2018, 6, 31169–31179. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; Huang, J.; Wen, T.; Ma, J.; Zhang, J. A comparative study of different machine learning methods for reservoir landslide displacement prediction. Eng. Geol. 2022, 298, 106544. [Google Scholar] [CrossRef]
- Lu, P.; Rosenbaum, M.S. Artificial neural networks and grey systems for the prediction of slope stability. Nat. Hazards 2003, 30, 383–398. [Google Scholar] [CrossRef]
- Huang, Z.; Cui, J.; Liu, H. Chaotic neural network method for slope stability prediction. Chin. J. Rock. Mech. Eng. 2004, 22, 015. [Google Scholar]
- Sakellariou, M.G.; Ferentinou, M.D. A study of slope stability prediction using neural networks. Geotech. Geol. Eng. 2005, 23, 419–445. [Google Scholar] [CrossRef]
- Wang, H.B.; Xu, W.Y.; Xu, R.C. Slope stability evaluation using back propagation neural networks. Eng. Geol. 2005, 80, 302–315. [Google Scholar] [CrossRef]
- Samui, P. Slope stability analysis: A support vector machine approach. Environ. Geol. 2008, 56, 255–267. [Google Scholar] [CrossRef]
- Zhao, H.-B. Slope reliability analysis using a support vector machine. Comput. Geotech. 2008, 35, 459–467. [Google Scholar] [CrossRef]
- Choobbasti, A.J.; Farrokhzad, F.; Barari, A. Prediction of slope stability using artificial neural network (case study: Noabad, Mazandaran, Iran). Arab. J. Geosci. 2009, 2, 311–319. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, Y. Prediction model for slope stability based on artificial immune algorithm. China J. Coal Soci. 2012, 37, 911–917. [Google Scholar] [CrossRef]
- Das, S.K.; Biswal, R.K.; Sivakugan, N.; Das, B. Classification of slopes and prediction of factor of safety using differential evolution neural networks. Environ. Earth Sci. 2011, 64, 201–210. [Google Scholar] [CrossRef]
- Liu, Z.; Shao, J.; Xu, W.; Chen, H.; Zhang, Y. An extreme learning machine approach for slope stability evaluation and prediction. Nat. Hazards 2014, 73, 787–804. [Google Scholar] [CrossRef]
- Hoang, N.-D.; Pham, A.-D. Hybrid artificial intelligence approach based on metaheuristic and machine learning for slope stability assessment: A multinational data analysis. Expert. Syst. Appl. 2016, 46, 60–68. [Google Scholar] [CrossRef]
- Suman, S.; Khan, S.Z.; Das, S.K.; Chand, S.K. Slope stability analysis using artificial intelligence techniques. Nat. Hazards 2016, 84, 727–748. [Google Scholar] [CrossRef]
- Verma, A.K.; Singh, T.N.; Chauhan, N.K.; Sarkar, K. A hybrid FEM–ANN approach for slope instability prediction. J. Inst. Eng. (India) Ser. A 2016, 97, 171–180. [Google Scholar] [CrossRef]
- Xue, X. Prediction of slope stability based on hybrid PSO and LSSVM. J. Comput. Civ. Eng. 2017, 31, 04016041. [Google Scholar] [CrossRef]
- Feng, X.; Li, S.; Yuan, C.; Zeng, P.; Sun, Y. Prediction of slope stability using naive bayes classifier. KSCE J. Civ. Eng. 2018, 22, 941–950. [Google Scholar] [CrossRef]
- Zhou, J.; Li, E.; Yang, S.; Wang, M.; Shi, X.; Yao, S.; Mitri, H.S. Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories. Saf. Sci. 2019, 118, 505–518. [Google Scholar] [CrossRef]
- Niu, P.-f.; Zhou, A.-h.; Huang, H.-c. Assessing model of highway slope stability based on optimized SVM. China Geol. 2020, 3, 339–344. [Google Scholar] [CrossRef]
- Abdollahi, A.; Li, D.; Deng, J.; Amini, A. An explainable artificial-intelligence-aided safety factor prediction of road embankments. Eng. Appl. Artif. Intel. 2024, 136, 108854. [Google Scholar] [CrossRef]
- Xie, S.J.; Lin, H.; Chen, Y.F.; Ma, T.X. Modified Mohr-Coulomb criterion for nonlinear strength characteristics of rocks. Fatigue Fract. Eng. Mater. 2024, 47, 2228–2242. [Google Scholar] [CrossRef]
- Shi, Z.; Li, J.; Pathegama Gamage, R.; Wang, M.; Lin, H.; Xie, S. Investigation on Mode II Fracture Mechanical Properties and Morphology Characteristics of Double-Edge Notched Cube Granite After Thermal Shock. Rock. Mech. Rock. Eng. 2024. [Google Scholar] [CrossRef]
- Xie, S.J.; Lin, H.; Chen, Y.F.; Wang, Y.X.; Cao, R.H.; Li, J.T. Statistical damage shear constitutive model of rock joints under seepage pressure. Front. Earth Sci. 2020, 8, 16. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Y.; Li, J. Prediction of slope stability coefficient based on grid search support vector machine. Railw. Eng. 2019, 59, 94–97. [Google Scholar]
- Hong, Y.; Shao, Z.; Ma, L. Application of a support vector machine for analysis and prediction of slope stability. J. Shenyang Jianzhu Univ. 2017, 33, 1004–1010. [Google Scholar]
- Su, G. Fast estination of safety factor for circular failure rock slope using gaussian process model. J. Basic. Sci. Eng. 2010, 18, 959–966. [Google Scholar]
- Wu, Y.Q.; Zhou, Y.S. Hybrid machine learning model and Shapley additive explanations for compressive strength of sustainable concrete. Constr. Build. Mater. 2022, 330, 127298. [Google Scholar] [CrossRef]
- Xie, S.J.; Lin, H.; Wang, Y.X.; Chen, Y.F.; Xiong, W.; Zhao, Y.L.; Du, S.G. A statistical damage constitutive model considering whole joint shear deformation. Int. J. Damage Mech. 2020, 29, 988–1008. [Google Scholar] [CrossRef]
- Xie, S.J.; Lin, H.; Chen, Y.F.; Yong, R.; Xiong, W.; Du, S.G. A damage constitutive model for shear behavior of joints based on determination of the yield point. Int. J. Rock. Mech. Min. Sci. 2020, 128, 104269. [Google Scholar] [CrossRef]
- Xie, S.; Lin, H.; Duan, H. A novel criterion for yield shear displacement of rock discontinuities based on renormalization group theory. Eng. Geol. 2023, 314, 107008. [Google Scholar] [CrossRef]
- Wu, Y.Q.; Wang, Y.P.; Li, D.; Zhang, J. Two-step detection of concrete internal condition using array ultrasound and deep learning. NDT E Int. 2023, 139, 102945. [Google Scholar] [CrossRef]
- Đurić, U.; Marjanović, M.; Radić, Z.; Abolmasov, B. Machine learning based landslide assessment of the Belgrade metropolitan area: Pixel resolution effects and a cross-scaling concept. Eng. Geol. 2019, 256, 23–38. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, L.; Zhou, J.-Q.; Wang, C. A new method for determining the hydraulic aperture of rough rock fractures using the support vector regression. Eng. Geol. 2020, 271, 105618. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.; Pang, R.; Xu, B. Seismic fragility analysis of high concrete faced rockfill dams based on plastic failure with support vector machine. Soil. Dyn. Earthq. Eng. 2021, 144, 106587. [Google Scholar] [CrossRef]
- Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef]
- Xie, S.; Lin, H.; Chen, Y.; Duan, H.; Liu, H.; Liu, B. Prediction of shear strength of rock fractures using support vector regression and grid search optimization. Mater. Today. Commun. 2023, 36, 106780. [Google Scholar] [CrossRef]
- Yin, F.; Ji, Q.; Cun, C. Data-driven modeling and prediction analysis for surface roughness of special-shaped stone by robotic grinding. IEEE Access 2022, 10, 67615–67629. [Google Scholar] [CrossRef]
- Xie, S.J.; Lin, H.; Chen, Y.F.; Yao, R.B.; Sun, Z.; Zhou, X. Hybrid machine learning models to predict the shear strength of discontinuities with different joint wall compressive strength. Nondestruct. Test. Eval. 2024, 1–12. [Google Scholar] [CrossRef]
- Laref, R.; Losson, E.; Sava, A.; Siadat, M. On the optimization of the support vector machine regression hyperparameters setting for gas sensors array applications. Chemom. Intell. Lab. 2019, 184, 22–27. [Google Scholar] [CrossRef]
- Fathipour-Azar, H. Shear strength criterion for rock discontinuities: A comparative study of regression approaches. Rock. Mech. Rock. Eng. 2023, 56, 4715–4725. [Google Scholar] [CrossRef]
- Sun, Z.; Li, Y.; Li, Y.; Su, L.; He, W. Investigation on compressive strength of coral aggregate concrete: Hybrid machine learning models and experimental validation. J. Build. Eng. 2024, 82, 108220. [Google Scholar] [CrossRef]
- Ma, T.; Hu, X.; Liu, H.; Peng, K.; Lin, Y.; Chen, Y.; Luo, K.; Xie, S.; Han, C.; Chen, M. Elastic modulus prediction for high-temperature treated rock using multi-step hybrid ensemble model combined with coronavirus herd immunity optimizer. Measurement 2025, 240, 115596. [Google Scholar] [CrossRef]
Source | Technique | Input | Number of Data |
---|---|---|---|
Lu and Rosenbaum [53] | Back propagation Neural network (BPNN) | γ, c, φ, α, H, ru | 32 |
Huang et al. [54] | Convolutional neural network (CNN) | γ, c, φ, α, H, ru | 64 |
Sakellariou and Ferentinou [55] | BPNN | γ, c, φ, α, H, ru | 46 |
Wang et al. [56] | BPNN | γ, c, φ, α, H | 27 |
Samui [57] | SVM | γ, c, φ, α, H, ru | 46 |
Zhao [58] | SVM | γ, c, φ | 10 |
Choobbasti et al. [59] | Artificial neural network (ANN) | γ, c, φ, α, H, ru | 36 |
Zhang and Luo [60] | K-nearest neighbor (KNN) | γ, c, φ, α, H, ru | 39 |
Das et al. [61] | ANN | γ, c, φ, α, H, ru | 46 |
Zhao et al. [45] | RVM | γ, c, φ, α, H, ru | 80 |
Liu et al. [62] | Extreme learning machine (ELM) | γ, c, φ, α, H, ru | 97 |
Hoang and Pham [63] | Least squares support vector classification (LS-SVC) | γ, c, φ, α, H, ru | 168 |
Suman et al. [64] | Functional networks (FNs), multivariate adaptive regression splines (MARS), and multigene genetic programming (MGGP) | γ, c, φ, α, H, ru | 103 |
Verma et al. [65] | ANN | c, φ, α, Pore pressure | 100 |
Rukhaiyar et al. [11] | Particle swarm optimization (PSO)–ANN | γ, c, φ, α, H, ru | 83 |
Xue [66] | PSO–LSSVM | γ, c, φ, α, H, ru | 46 |
Feng et al. [67] | NBC naive bayes classifier (NBC) | γ, c, φ, α, H, ru | 82 |
Qi and Tang [25] | Six integrated AI approaches | γ, c, φ, α, H, ru | 148 |
Zhou et al. [68] | Gradient boosting machine (GBM) | γ, c, φ, α, H, ru | 221 |
Niu et al. [69] | Genetic algorithm (GA)–SVM | γ, c, φ, α, H, ru | 40 |
Manouchehrian et al. [46] | GA | γ, c, φ, α, H, ru | 121 |
Abdollahi et al. [70] | PyCaret AutoML environment | / | / |
Feature | N Total | Unit | Mean | Median Absolute Deviation | Skewness | Kurtosis | Standard Deviation | Maximum |
---|---|---|---|---|---|---|---|---|
γ | 166 | kN/m3 | 22.1108 | 3.16 | −0.1522 | −0.3978 | 4.9362 | 31.3 |
c | 166 | kPa | 26.4072 | 14.84 | 1.8900 | 4.4461 | 30.1166 | 150.05 |
φ | 166 | ° | 30.1155 | 3 | −1.4863 | 2.2215 | 10.0662 | 45 |
α | 166 | ° | 36.7319 | 6 | −0.6007 | −0.7066 | 10.0275 | 53 |
H | 166 | m | 127.9484 | 42 | 1.1404 | −0.0887 | 150.5761 | 511 |
ru | 166 | - | 0.2602 | 0.06 | −0.5997 | 0.3467 | 0.1292 | 0.5 |
FS | 166 | - | 1.2561 | 0.18 | 0.6031 | 0.1997 | 0.3256 | 2.05 |
Model | Data | R2 | MAE | RMSE | MAPE |
---|---|---|---|---|---|
Improved SVR | Training dataset | 0.9159 | 0.043 | 0.0888 | 3.793% |
Testing dataset | 0.9010 | 0.082 | 0.1325 | 7.41% | |
All set | 0.9129 | 0.051 | 0.099 | 4.49% | |
SVR | Training dataset | 0.7465 | 0.104 | 0.1617 | 8.12% |
Testing dataset | 0.7459 | 0.188 | 0.2386 | 13.91% | |
All set | 0.7464 | 0.120 | 0.179 | 9.24% |
No. | FS | ||||||||
---|---|---|---|---|---|---|---|---|---|
True Values | BP Model [44] | GA-BP Model [44] | GP Model [76] | Proposed Model | |||||
Predicted Results | Errors (%) | Predicted Results | Errors (%) | Predicted Results | Errors (%) | Predicted Results | Errors (%) | ||
1 | 0.96 | 1.03 | 7.2917 | 1.0928 | 13.8333 | 1.0258 | 6.8542 | 1.05678 | 10.0813 |
2 | 1.15 | 1.16 | 0.8696 | 1.2543 | 9.0696 | 1.3147 | 14.3217 | 1.23214 | 7.1426 |
3 | 1.34 | 1.44 | 7.4627 | 1.2218 | −8.8209 | 1.3696 | 2.2089 | 1.35395 | 1.0410 |
4 | 1.20 | 1.14 | −5 | 1.2022 | 0.1833 | 1.1997 | −0.025 | 1.20637 | 0.5308 |
5 | 1.55 | 1.62 | 4.5161 | 1.5005 | −3.1936 | 1.4207 | −8.3419 | 1.52003 | −1.9336 |
6 | 1.45 | 1.41 | −2.7586 | 1.4570 | 0.4828 | 1.3880 | −4.2759 | 1.43555 | −0.9966 |
7 | 1.31 | 1.47 | 12.2137 | 1.2678 | −3.2214 | 1.3262 | 1.2366 | 1.31395 | 0.3015 |
8 | 1.49 | 1.6 | 7.3826 | 1.5594 | 4.6577 | 1.4674 | −1.5168 | 1.48754 | −0.1651 |
9 | 1.20 | 1.18 | −1.6667 | 1.1977 | −0.1917 | 1.2107 | 0.8917 | 1.18327 | −1.3942 |
10 | 1.52 | 1.64 | 7.8947 | 1.4883 | −2.0855 | 1.4670 | −3.4868 | 1.50523 | −0.9717 |
11 | 1.2 | 1.14 | −5 | 1.2063 | 0.525 | 1.2654 | 5.45 | 1.21410 | 1.175 |
R2 | 0.891 | 0.851 | 0.866 | 0.974 | |||||
RMSE | 0.086 | 0.058 | 0.046 | 0.023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, D.; Zhang, Y.; Lu, Z.; Lin, H.; Jiang, Z. Predicting Factor of Safety of Slope Using an Improved Support Vector Machine Regression Model. Mathematics 2024, 12, 3254. https://doi.org/10.3390/math12203254
Lei D, Zhang Y, Lu Z, Lin H, Jiang Z. Predicting Factor of Safety of Slope Using an Improved Support Vector Machine Regression Model. Mathematics. 2024; 12(20):3254. https://doi.org/10.3390/math12203254
Chicago/Turabian StyleLei, Daxing, Yaoping Zhang, Zhigang Lu, Hang Lin, and Zheyuan Jiang. 2024. "Predicting Factor of Safety of Slope Using an Improved Support Vector Machine Regression Model" Mathematics 12, no. 20: 3254. https://doi.org/10.3390/math12203254
APA StyleLei, D., Zhang, Y., Lu, Z., Lin, H., & Jiang, Z. (2024). Predicting Factor of Safety of Slope Using an Improved Support Vector Machine Regression Model. Mathematics, 12(20), 3254. https://doi.org/10.3390/math12203254