Regularity of Idempotent Reflexive GP-V’-Rings
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Faith, C. Lectures on Injective Modules and Quotient Rings; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1967; Volume 49. [Google Scholar]
- Michler, G.O.; Villamayor, O.E. On rings whose simple modules are injective. J. Algebra 1973, 25, 185–201. [Google Scholar] [CrossRef]
- Roger, Y.C.M. On (von Neumann) regular rings. Proc. Edinb. Math. Soc. 1974, 19, 89–91. [Google Scholar]
- Roger, Y.C.M. On regular rings and artinian rings(II). Riv. Math. Univ. Parma 1985, 4, 101–109. [Google Scholar]
- Nam, S.B. A note on simple singular GP-injective modules. Korean J. Math. 1999, 7, 215–218. [Google Scholar]
- Ding, N.Q.; Chen, J.L. Rings whose simple singular modules are YJ-injective. Math. Jpn. 1994, 40, 191–195. [Google Scholar]
- Khurana, D.; Nielsen, P.P. Perspectivity and von Neumann regularity. Commun. Algebra 2021, 49, 5483–5499. [Google Scholar] [CrossRef]
- Wisbauor, R. Foundations of Module and Ring Theory; Routledge: London, UK, 2017. [Google Scholar]
- Kim, N.K.; Kwak, T.K.; Lee, Y.; Ryu, S.J. On von Neumann regularity of commutators. Algebra Colloq. 2024, 31, 181–198. [Google Scholar] [CrossRef]
- Jeong, J.; Kwak, T.K. On rings whose essential maximal right ideals are GP-injective. Commun. Korean Math. Soc. 2022, 37, 399–407. [Google Scholar]
- Kim, J.Y. Certain rings whose simple singular modules are GP-injective. Proc. Jpn. Acad. 2005, 81, 125–128. [Google Scholar] [CrossRef]
- Birkenmeier, G.F.; Kim, J.Y.; Park, J.K. A characterization of minimal prime ideals. Glasg. Math. J. 1998, 40, 223–236. [Google Scholar] [CrossRef]
- Zhang, J.L. Characterizations of strongly regular rings. Northeast. Math. J. 1994, 10, 359–364. [Google Scholar]
- Xiao, G.S. On GP-V rings and characterizations of strongly regular rings. Northeast. Math. J. 2002, 18, 291–297. [Google Scholar]
- Zhou, H.Y.; Wang, X.D. On von-Neumann regular rings and left SF-rings. J. Math. Res. Expo. 2004, 24, 679–683. [Google Scholar]
- Xiao, G.S.; Tong, W.T. Rings whose every simple left R-modules is GP-injective. Southeast Asian Bull. Math. 2006, 30, 969–980. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Zou, W.; Li, Y. Regularity of Idempotent Reflexive GP-V’-Rings. Mathematics 2024, 12, 3265. https://doi.org/10.3390/math12203265
Li L, Zou W, Li Y. Regularity of Idempotent Reflexive GP-V’-Rings. Mathematics. 2024; 12(20):3265. https://doi.org/10.3390/math12203265
Chicago/Turabian StyleLi, Liuwen, Wenlin Zou, and Ying Li. 2024. "Regularity of Idempotent Reflexive GP-V’-Rings" Mathematics 12, no. 20: 3265. https://doi.org/10.3390/math12203265
APA StyleLi, L., Zou, W., & Li, Y. (2024). Regularity of Idempotent Reflexive GP-V’-Rings. Mathematics, 12(20), 3265. https://doi.org/10.3390/math12203265