A Novel Axial Load Inversion Method for Rock Bolts Based on the Surface Strain of a Bearing Plate
Abstract
:1. Introduction
2. Mechanism of Axial Load Inversion Based on an Anchor Bolt Plate
2.1. The Fundamental Principle of Axial Load Inversion Based on an Anchor Bolt Plate
2.2. Axial Load Inversion Model Based on the Surface Strain Evolution Law for Anchor Bolt Plates
3. Finite Element Analysis
3.1. Establishment of the Finite Element Model and Simulation Scheme
3.2. Results of Finite Element Simulation
3.3. Fitting and Verification of the Load Inversion Model for Anchor Bolt Plates
4. Physical Experiments and Model Applications
4.1. Load Inversion Model Validation via Dynamic High-Speed Data Acquisition System
4.2. A Novel Axial Load Inversion Method for Rock Bolts Based on Digital Image Correlation
4.3. Field Test and Engineering Application
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Staniek, A. Technical Problems and Non Destructive Testing of Rock Bolt Support Systems in Mines. Int. J. Coal Sci. Technol. 2023, 10, 6. [Google Scholar] [CrossRef]
- Li, D.; Ma, S.; Lane, M.; Chang, P.; Crompton, B.; Hagen, S.A. Laboratory Investigations into the Failure Mechanisms of New Yielding and Inflatable Rockbolts Under Axial and Shearing Loading Conditions. Rock Mech. Rock Eng. 2023, 56, 565–587. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, J.; Xiao, J. Bibliometric Analysis and Review of Mine Ventilation Literature Published between 2010 and 2023. Heliyon 2024, 10, e26133. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Spearing, A.J.S.; Jessu, K.V.; Caroline Pinazzi da Silva Ribeiro, P. Establishing the Need to Model the Actual State of Stress Along Rock Bolts. Int. J. Min. Sci. Technol. 2020, 30, 279–286. [Google Scholar] [CrossRef]
- Dai, L.; Xiao, Y.; Pan, Y.; Wang, A.; Fan, C.; Guo, J. Mechanical Behavior and Factors Influencing Axial Splitting Energy Absorbers and Optimized Application for Rock Bolts. Tunn. Undergr. Space Technol. 2020, 102, 103427. [Google Scholar] [CrossRef]
- He, Z.; Xu, X.; Rao, D.; Peng, P.; Wang, J.; Tian, S. PSSegNet: Segmenting the P- and S-Phases in Microseismic Signals through Deep Learning. Mathematics 2023, 12, 130. [Google Scholar] [CrossRef]
- Wang, J.; Xue, Y.; Xiao, J.; Shi, D. Diffusion Characteristics of Airflow and CO in the Dead-End Tunnel with Different Ventilation Parameters after Tunneling Blasting. ACS Omega 2023, 8, 36269–36283. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, J.; Xue, Y.; Wen, L.; Shi, D. Optimization of Airflow Distribution in Mine Ventilation Networks Using the Modified Sooty Tern Optimization Algorithm. Min. Metall. Explor. 2024, 41, 239–257. [Google Scholar] [CrossRef]
- He, Z.; Jia, M.; Wang, L. UACNet: A Universal Automatic Classification Network for Microseismic Signals Regardless of Waveform Size and Sampling Rate. Eng. Appl. Artif. Intell. 2023, 126, 107088. [Google Scholar] [CrossRef]
- He, Z.; Ma, S.; Wang, L.; Peng, P. A Novel Wavelet Selection Method for Seismic Signal Intelligent Processing. Appl. Sci. 2022, 12, 6470. [Google Scholar] [CrossRef]
- Pinazzi, P.C.; Spearing, A.J.S.; Jessu, K.V.; Singh, P.; Hawker, R. Mechanical Performance of Rock Bolts under Combined Load Conditions. Int. J. Min. Sci. Technol. 2020, 30, 167–177. [Google Scholar] [CrossRef]
- Song, G.; Li, W.; Wang, B.; Ho, S.C.M. A Review of Rock Bolt Monitoring Using Smart Sensors. Sensors 2017, 17, 776. [Google Scholar] [CrossRef] [PubMed]
- Spearing, A.J.S.; Hyett, A.J.; Kostecki, T.; Gadde, M. New Technology for Measuring the in Situ Performance of Rock Bolts. Int. J. Rock Mech. Min. Sci. 2013, 57, 153–166. [Google Scholar] [CrossRef]
- Mitri, H. Evaluation of Rock Support Performance Through Instrumentation and Monitoring of Bolt Axial Load. In Proceedings of the 11th Underground Coal Operators’ Conference, Wollongong, Australia, 21 March 2011; pp. 136–140. [Google Scholar]
- Moerman, W.; Taerwe, L.; De Waele, W.; Degrieck, J.; Himpe, J. Measuring Ground Anchor Forces of a Quay Wall with Bragg Sensors. J. Struct. Eng. 2005, 131, 322–328. [Google Scholar] [CrossRef]
- Ho, S.C.M.; Li, W.; Wang, B.; Song, G. A Load Measuring Anchor Plate for Rock Bolt Using Fiber Optic Sensor. Smart Mater. Struct. 2017, 26, 057003. [Google Scholar] [CrossRef]
- Weng, X.; Ma, H.; Wang, J. Stress Monitoring for Anchor Rods System in Subway Tunnel Using FBG Technology. Adv. Mater. Sci. Eng. 2015, 2015, 480184. [Google Scholar] [CrossRef]
- Moffat, R.A.; Beltran, J.F.; Herrera, R. Applications of BOTDR Fiber Optics to the Monitoring of Underground Structures. Geomech. Eng. 2015, 9, 397–414. [Google Scholar] [CrossRef]
- Vlachopoulos, N.; Cruz, D.; Forbes, B. Utilizing a Novel Fiber Optic Technology to Capture the Axial Responses of Fully Grouted Rock Bolts. J. Rock Mech. Geotech. Eng. 2018, 10, 222–235. [Google Scholar] [CrossRef]
- Tang, B.; Cheng, H.; Tang, Y.; Yao, Z.; Rong, C.; Xue, W.; Lin, J. Application of a FBG-Based Instrumented Rock Bolt in a TBM-Excavated Coal Mine Roadway. J. Sens. 2018, 2018, e8191837. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, N.; Kan, J.; Xie, Z.; Wei, Q.; Yao, W. Fiber Bragg Grating Monitoring of Full-Bolt Axial Force of the Bolt in the Deep Strong Mining Roadway. Sensors 2020, 20, 4242. [Google Scholar] [CrossRef]
- Cai, Y.; Esaki, T.; Jiang, Y. An Analytical Model to Predict Axial Load in Grouted Rock Bolt for Soft Rock Tunnelling. Tunn. Undergr. Space Technol. 2004, 19, 607–618. [Google Scholar] [CrossRef]
- Jalalifar, H. An Analytical Solution to Predict Axial Load along Fully Grouted Bolts in an Elasto-Plastic Rock Mass. J. South. Afr. Inst. Min. Metall. 2011, 111, 809–814. [Google Scholar]
- Korzeniowski, W.; Skrzypkowski, K.; Herezy, Ł. Laboratory Method for Evaluating the Characteristics of Expansion Rock Bolts Subjected to Axial Tension. Arch. Min. Sci. 2015, 60, 209–224. [Google Scholar] [CrossRef]
- Li, D.; Masoumi, H.; Hagan, P.C.; Saydam, S. Experimental and Analytical Study on the Mechanical Behaviour of Cable Bolts Subjected to Axial Loading and Constant Normal Stiffness. Int. J. Rock Mech. Min. Sci. 2019, 113, 83–91. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, L.; Juang, C.H. An Analytical Model for Estimating the Force and Displacement of Fully Grouted Rock Bolts. Comput. Geotech. 2020, 117, 103222. [Google Scholar] [CrossRef]
- Zhao, C.; Li, Y.; Liu, G.; Chen, D.; Meng, X. Research on the Stress Distribution Law of Fully Anchored Bolt and Analysis of Influencing Factors under the Condition of Surrounding Rock Deformation. Adv. Civ. Eng. 2020, 2020, e8818375. [Google Scholar] [CrossRef]
- Li, D.; Li, Y.; Chen, J.; Masoumi, H. An Analytical Model for Axial Performance of Rock Bolts under Constant Confining Pressure Based on Continuously Yielding Criterion. Tunn. Undergr. Space Technol. 2021, 113, 103955. [Google Scholar] [CrossRef]
- Yao, S.; Cai, H.; Lu, A. Viscoelastic Solution for Axial Forces of Point-Anchored Rock Bolts in a Circular Tunnel. Int. J. Appl. Mech. 2023, 15, 2350011. [Google Scholar] [CrossRef]
- Wang, B.; Yu, W.; Chen, Z. Effect of Anchor Plate on the Mechanical Behavior of Prestressed Rock Bolt Used in Squeezing Large Deformation Tunnel. Acta Geotech. 2022, 17, 3591–3611. [Google Scholar] [CrossRef]
- Gallwey, J.; Eyre, M.; Coggan, J. A Machine Learning Approach for the Detection of Supporting Rock Bolts from Laser Scan Data in an Underground Mine. Tunn. Undergr. Space Technol. 2021, 107, 103656. [Google Scholar] [CrossRef]
- Li, C.; Xia, X.; Feng, R.; Gao, X.; Chen, X.; Lei, G.; Bai, J.; Nie, B.; Zhang, Z.; Zhang, B. Experimental Study of the Effect of Axial Load on Stress Wave Characteristics of Rock Bolts Using a Non-Destructive Testing Method. Sustainability 2022, 14, 9773. [Google Scholar] [CrossRef]
- Liu, W.; Gao, F.; Dong, S.; Yuan, G. A Novel Method for Estimating Axial Force of Rock Bolt Through 3D Laser Scanning and Deep Learning. Rock Mech. Rock Eng. 2024, 57, 1437–1450. [Google Scholar] [CrossRef]
- Wang, M.; Shang, L.; Zhang, B.; Li, Y.; Su, J.; Wang, S. Study on Reasonable Anchorage Length Based on Failure Mechanism of the Bolt Anchorage System. Sci. Rep. 2023, 13, 22915. [Google Scholar] [CrossRef] [PubMed]
- Hasanzadehshooiili, H.; Lakirouhani, A.; Medzvieckas, J. Superiority of Artificial Neural Networks over Statistical Methods in Prediction of the Optimal Length of Rock Bolts. J. Civ. Eng. Manag. 2012, 18, 655–661. [Google Scholar] [CrossRef]
Location and numbering of anchor bolts | Left Side 1 | Left Side 2 | Left Side 3 | Top Anchor 1 | Top Anchor 2 | Top Anchor 3 | Top Anchor 4 | Top Anchor 5 | Right Side 1 | Right Side 2 | Right Side 3 |
Measured load (kN) | 37 | 43 | 41 | 92 | 83 | 103 | 105 | 96 | 38 | 42 | 43 |
Actual load (kN) | 35 | 45 | 49 | 96 | 87 | 100 | 102 | 98 | 40 | 47 | 33.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, Y.; Xu, X.; Tian, S.; Shi, H. A Novel Axial Load Inversion Method for Rock Bolts Based on the Surface Strain of a Bearing Plate. Mathematics 2024, 12, 3480. https://doi.org/10.3390/math12223480
Lei Y, Xu X, Tian S, Shi H. A Novel Axial Load Inversion Method for Rock Bolts Based on the Surface Strain of a Bearing Plate. Mathematics. 2024; 12(22):3480. https://doi.org/10.3390/math12223480
Chicago/Turabian StyleLei, Yongchao, Xingliang Xu, Suchuan Tian, and Hao Shi. 2024. "A Novel Axial Load Inversion Method for Rock Bolts Based on the Surface Strain of a Bearing Plate" Mathematics 12, no. 22: 3480. https://doi.org/10.3390/math12223480
APA StyleLei, Y., Xu, X., Tian, S., & Shi, H. (2024). A Novel Axial Load Inversion Method for Rock Bolts Based on the Surface Strain of a Bearing Plate. Mathematics, 12(22), 3480. https://doi.org/10.3390/math12223480