QuEst: Adversarial Attack Intensity Estimation via Query Response Analysis
Abstract
:1. Introduction
- Adversarial attacks in retrieval tasks degrade the relevance of the retrieval results to the query and disrupt the internal consistency of the results. This observation forms the basis for the proposed method.
- Based on this observation, this paper proposes an adversarial defense method for accurately estimating adversarial attack intensity by analyzing the query response data. This approach allows the dynamic adjustment of the purification strength in response to varying these adversarial perturbations.
- The proposed method preserves the predictive performance on clean data by avoiding unnecessary manipulation and enhancing the effectiveness of adversarial purification. This approach ensures the robust performance and reliability of the system in the presence of adversarial examples.
2. Related Work
2.1. Person Re-Identification
2.2. Adversarial Metric Attack
2.3. Adversarial Defense
3. Methods
3.1. Preliminaries
3.2. Statistical Metrics for Experimental Study Based on Query Response
3.3. Adversarial Attack Intensity Estimation
Algorithm 1 Training Procedure for QuEst |
Require: Training set T without query-gallery distinction
Ensure: Trained regression model
|
Algorithm 2 Query Response Analysis-based Attack Intensity Estimator (QuEst) |
Input: Query image Output: Estimated attack intensity
|
3.4. Adjusting Purification Strength Using Estimated Attack Intensity
4. Experiments
4.1. Experimental Setup
4.1.1. Datasets and Adversarial Attacks
4.1.2. Models
4.2. Implementation Details
4.3. Evaluation Metrics
4.4. Comparison with State-of-the-Art Attack Detection Methods
4.5. Comparison with Previous Attack Intensity Estimation Method
4.6. Estimated Attack Intensity Effectiveness on Diffusion-Based Adversarial Purification Methods
4.7. Ablation Studies
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bai, S.; Li, Y.; Zhou, Y.; Li, Q.; Torr, P.H. Adversarial metric attack and defense for person re-identification. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 2119–2126. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, G.; Li, Y.; Zhang, D.; Lin, L. Transferable, controllable, and inconspicuous adversarial attacks on person re-identification with deep mis-ranking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–19 June 2020; pp. 342–351. [Google Scholar]
- Yang, F.; Weng, J.; Zhong, Z.; Liu, H.; Wang, Z.; Luo, Z.; Sebe, N. Towards Robust Person Re-Identification by Defending Against Universal Attackers. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 5218–5235. [Google Scholar] [CrossRef] [PubMed]
- Gowal, S.; Qin, C.; Uesato, J.; Mann, T.; Kohli, P. Uncovering the limits of adversarial training against norm-bounded adversarial examples. arXiv 2020, arXiv:2010.03593. [Google Scholar]
- Kang, Q.; Song, Y.; Ding, Q.; Tay, W.P. Stable neural ode with lyapunov-stable equilibrium points for defending against adversarial attacks. In Proceedings of the Advances in Neural Information Processing Systems, Virtual, 6–14 December 2021; pp. 14925–14937. [Google Scholar]
- Jin, G.; Yi, X.; Wu, D.; Mu, R.; Huang, X. Randomized adversarial training via taylor expansion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 16447–16457. [Google Scholar]
- Bai, T.; Luo, J.; Zhao, J.; Wen, B.; Wang, Q. Recent Advances in Adversarial Training for Adversarial Robustness. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, Montreal, QC, Canada, 19–27 August 2021; pp. 4312–4321. [Google Scholar]
- Frosio, I.; Kautz, J. The Best Defense Is a Good Offense: Adversarial Augmentation Against Adversarial Attacks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 20–22 June 2023; pp. 4067–4076. [Google Scholar]
- Nie, W.; Guo, B.; Huang, Y.; Xiao, C.; Vahdat, A.; Anandkumar, A. Diffusion models for adversarial purification. arXiv 2022, arXiv:2205.07460. [Google Scholar]
- Samangouei, P. Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models. arXiv 2018, arXiv:1805.06605. [Google Scholar]
- Song, Y.; Kim, T.; Nowozin, S.; Ermon, S.; Kushman, N. PixelDefend: Leveraging Generative Models to Understand and Defend Against Adversarial Examples. arXiv 2017, arXiv:1710.10766. [Google Scholar]
- Yang, Z.; Xu, Z.; Zhang, J.; Hartley, R.; Tu, P. Adversarial Purification with the Manifold Hypothesis. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 20–28 February 2024; pp. 16379–16387. [Google Scholar]
- Grathwohl, W.; Wang, K.-C.; Jacobsen, J.-H.; Duvenaud, D.; Norouzi, M.; Swersky, K. Your Classifier Is Secretly an Energy Based Model and You Should Treat It Like One. arXiv 2019, arXiv:1912.03263. [Google Scholar]
- Schott, L.; Rauber, J.; Bethge, M.; Brendel, W. Towards the First Adversarially Robust Neural Network Model on MNIST. In Proceedings of the Seventh International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019; pp. 1–16. [Google Scholar]
- Yoon, J.; Hwang, S.J.; Lee, J. Adversarial Purification with Score-Based Generative Models. In Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 12062–12072. [Google Scholar]
- Lee, I.; Yoo, S.B. Latent-per: Ica-latent code editing framework for portrait emotion recognition. Mathematics 2022, 10, 4260. [Google Scholar] [CrossRef]
- Wang, J.; Lyu, Z.; Lin, D.; Dai, B.; Fu, H. Guided diffusion model for adversarial purification. arXiv 2022, arXiv:2205.14969. [Google Scholar]
- Lee, M.; Kim, D. Robust Evaluation of Diffusion-Based Adversarial Purification. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 134–144. [Google Scholar]
- Lee, E.G.; Lee, M.S.; Yoon, J.H.; Yoo, S.B. IntensPure: Attack Intensity-Aware Secondary Domain Adaptive Diffusion for Adversarial Purification. In Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence, Jeju, Republic of Korea, 3–9 August 2024; pp. 956–964. [Google Scholar]
- Deng, Z.; Yang, X.; Xu, S.; Su, H.; Zhu, J. LIBRE: A Practical Bayesian Approach to Adversarial Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 19–25 June 2021; pp. 972–982. [Google Scholar]
- Zhang, S.; Liu, F.; Yang, J.; Yang, Y.; Li, C.; Han, B.; Tan, M. Detecting Adversarial Data by Probing Multiple Perturbations Using Expected Perturbation Score. In Proceedings of the International Conference on Machine Learning, Honolulu, HI, USA, 23–29 July 2023; pp. 41429–41451. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Zheng, L.; Shen, L.; Tian, L.; Wang, S.; Wang, J.; Tian, Q. Scalable Person Re-Identification: A Benchmark. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1116–1124. [Google Scholar]
- Qian, X.; Fu, Y.; Jiang, Y.-G.; Xiang, T.; Xue, X. Multi-Scale Deep Learning Architectures for Person Re-Identification. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5399–5408. [Google Scholar]
- Li, W.; Zhu, X.; Gong, S. Harmonious Attention Network for Person Re-Identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2285–2294. [Google Scholar]
- Lee, I.; Yun, J.S.; Kim, H.H.; Na, Y.; Yoo, S.B. Latentgaze: Cross-domain gaze estimation through gaze-aware analytic latent code manipulation. In Proceedings of the Asian Conference on Computer Vision, Macao, China, 4–8 December 2022; pp. 3379–3395. [Google Scholar]
- Zheng, F.; Deng, C.; Sun, X.; Jiang, X.; Guo, X.; Yu, Z.; Huang, F.; Ji, R. Pyramidal Person Re-Identification via Multi-Loss Dynamic Training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 8514–8522. [Google Scholar]
- Wu, W.; Tao, D.; Li, H.; Yang, Z.; Cheng, J. Deep Features for Person Re-Identification on Metric Learning. Pattern Recognit. 2021, 110, 107424. [Google Scholar] [CrossRef]
- Kim, M.H.; Yoo, S.B. Memory-Efficient Discrete Cosine Transform Domain Weight Modulation Transformer for Arbitrary-Scale Super-Resolution. Mathematics 2023, 11, 3954. [Google Scholar] [CrossRef]
- Mohammed, H.J.; Al-Fahdawi, S.; Al-Waisy, A.S.; Zebari, D.A.; Ibrahim, D.A.; Mohammed, M.A.; Kadry, S.; Kim, J. ReID-DeePNet: A Hybrid Deep Learning System for Person Re-Identification. Mathematics 2022, 10, 3530. [Google Scholar] [CrossRef]
- Hong, Y.; Kim, M.J.; Lee, I.; Yoo, S.B. Fluxformer: Flow-Guided Duplex Attention Transformer via Spatio-Temporal Clustering for Action Recognition. IEEE Robot. Autom. Lett. 2023, 8, 6411–6418. [Google Scholar] [CrossRef]
- Li, Q.; Yan, C.; Peng, X. Learning the Meta Feature Transformer for Unsupervised Person Re-Identification. Mathematics 2024, 12, 1812. [Google Scholar] [CrossRef]
- Yun, J.S.; Kim, M.H.; Kim, H.I.; Yoo, S.B. Kernel adaptive memory network for blind video super-resolution. Expert Syst. Appl. 2024, 238, 122252. [Google Scholar] [CrossRef]
- Zheng, Z.; Zheng, L.; Yang, Y. A Discriminatively Learned CNN Embedding for Person Re-Identification. ACM Trans. Multimed. Comput. Commun. Appl. 2017, 14, 1–20. [Google Scholar] [CrossRef]
- Wu, L.; Wang, Y.; Gao, J.; Li, X. Where-and-When to Look: Deep Siamese Attention Networks for Video-Based Person Re-Identification. IEEE Trans. Multimed. 2018, 21, 1412–1424. [Google Scholar] [CrossRef]
- Chung, D.; Tahboub, K.; Delp, E.J. A Two Stream Siamese Convolutional Neural Network for Person Re-Identification. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1983–1991. [Google Scholar]
- Li, D.X.; Fei, G.Y.; Teng, S.W. Learning Large Margin Multiple Granularity Features with an Improved Siamese Network for Person Re-Identification. Symmetry 2020, 12, 92. [Google Scholar] [CrossRef]
- Gong, X.; Zhu, S. Person re-identification based on two-stream network with attention and pose features. IEEE Access 2019, 7, 131374–131382. [Google Scholar] [CrossRef]
- Zhang, W.; He, X.; Yu, X.; Lu, W.; Zha, Z.; Tian, Q. A multi-scale spatial-temporal attention model for person re-identification in videos. IEEE Trans. Image Process. 2019, 29, 3365–3373. [Google Scholar] [CrossRef]
- Yoon, J.H.; Jung, J.W.; Yoo, S.B. Auxcoformer: Auxiliary and Contrastive Transformer for Robust Crack Detection in Adverse Weather Conditions. Mathematics 2024, 12, 690. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, L.; Qin, F. Dual attention-based method for occluded person re-identification. Knowl.-Based Syst. 2021, 212, 106554. [Google Scholar] [CrossRef]
- Chen, G.; Gu, T.; Lu, J.; Bao, J.A.; Zhou, J. Person re-identification via attention pyramid. IEEE Trans. Image Process. 2021, 30, 7663–7676. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.G.; Lee, I.; Yoo, S.B. ClueCatcher: Catching Domain-Wise Independent Clues for Deepfake Detection. Mathematics 2023, 11, 3952. [Google Scholar] [CrossRef]
- Yang, F.; Yan, K.; Lu, S.; Jia, H.; Xie, X.; Gao, W. Attention driven person re-identification. Pattern Recognit. 2019, 86, 143–155. [Google Scholar] [CrossRef]
- Lee, I.; Lee, E.; Yoo, S.B. Latent-OFER: Detect, mask, and reconstruct with latent vectors for occluded facial expression recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 1536–1546. [Google Scholar]
- Lu, Y.; Jiang, M.; Liu, Z.; Mu, X. Dual-branch adaptive attention transformer for occluded person re-identification. Image Vis. Comput. 2023, 131, 104633. [Google Scholar] [CrossRef]
- Jia, M.; Sun, Y.; Zhai, Y.; Cheng, X.; Yang, Y.; Li, Y. Semi-Attention Partition for Occluded Person Re-Identification. In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; pp. 998–1006. [Google Scholar]
- Wu, Y.; Bourahla, O.E.F.; Li, X.; Wu, F.; Tian, Q.; Zhou, X. Adaptive graph representation learning for video person re-identification. IEEE Trans. Image Process. 2020, 29, 8821–8830. [Google Scholar] [CrossRef]
- Zhang, Y.; Qian, Q.; Wang, H.; Liu, C.; Chen, W.; Wang, F. Graph convolution based efficient re-ranking for visual retrieval. IEEE Trans. Multimedia 2023, 26, 1089–1101. [Google Scholar] [CrossRef]
- Kim, M.H.; Kim, M.J.; Yoo, S.B. Occluded Part-aware Graph Convolutional Networks for Skeleton-based Action Recognition. In Proceedings of the 2024 IEEE International Conference on Robotics and Automation, Yokohama, Japan, 13–17 May 2024; pp. 7310–7317. [Google Scholar]
- Pan, H.; Liu, Q.; Chen, Y.; He, Y.; Zheng, Y.; Zheng, F.; He, Z. Pose-aided video-based person re-identification via recurrent graph convolutional network. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 7183–7196. [Google Scholar] [CrossRef]
- Hong, X.; Adam, T.; Ghazali, M. Tran-GCN: A Transformer-Enhanced Graph Convolutional Network for Person Re-Identification in Monitoring Videos. arXiv 2024, arXiv:2409.09391. [Google Scholar]
- Lian, Y.; Huang, W.; Liu, S.; Guo, P.; Zhang, Z.; Durrani, T.S. Person re-identification using local relation-aware graph convolutional network. Sensors 2023, 23, 8138. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.W.; Yoon, J.H.; Yoo, S.B. DenseSphere: Multimodal 3D Object Detection under a Sparse Point Cloud Based on Spherical Coordinate. Expert Syst. Appl. 2024, 251, 124053. [Google Scholar] [CrossRef]
- Huang, M.; Hou, C.; Yang, Q.; Wang, Z. Reasoning and tuning: Graph attention network for occluded person re-identification. IEEE Trans. Image Process. 2023, 32, 1568–1582. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Wang, G.; Zhao, W.; Zhao, W.; Guan, Z. Edge-weight-embedding Graph Convolutional Network for Person Re-identification. IEEE Intell. Syst. 2024, 39, 74–82. [Google Scholar] [CrossRef]
- Xian, Y.; Yang, J.; Yu, F.; Zhang, J.; Sun, X. Graph-based self-learning for robust person re-identification. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Honolulu, HI, USA, 3–7 January 2023; pp. 4789–4798. [Google Scholar]
- Zhang, H.; Liu, M.; Li, Y.; Yan, M.; Gao, Z.; Chang, X.; Nie, L. Attribute-Guided Collaborative Learning for Partial Person Re-Identification. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 14144–14160. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, W.; Wang, R.; Lin, Y.; Zhou, W.; Lan, G. Enhance domain-invariant transferability of adversarial examples via distance metric attack. Mathematics 2022, 10, 1249. [Google Scholar] [CrossRef]
- Chen, Z.; Li, B.; Wu, S.; Ding, S.; Zhang, W. Query-efficient decision-based black-box patch attack. IEEE Trans. Inf. Forensics Secur. 2023, 18, 5522–5536. [Google Scholar] [CrossRef]
- Chen, Z.; Li, B.; Wu, S.; Jiang, K.; Ding, S.; Zhang, W. Content-based unrestricted adversarial attack. In Proceedings of the Advances in Neural Information Processing Systems, New Orleans, LA, USA, 10–16 December 2023; pp. 51719–51733. [Google Scholar]
- Wang, F.; Ma, Z.; Zhang, X.; Li, Q.; Wang, C. DDSG-GAN: Generative Adversarial Network with Dual Discriminators and Single Generator for Black-Box Attacks. Mathematics 2023, 11, 1016. [Google Scholar] [CrossRef]
- Zheng, Z.; Zheng, L.; Yang, Y.; Wu, F. Query Attack via Opposite-Direction Feature: Towards Robust Image Retrieval. arXiv 2018, arXiv:1809.02681. [Google Scholar]
- Subramanyam, A.V. Meta generative attack on person reidentification. IEEE Trans. Circuit Syst. Video Technol. 2023, 33, 4429–4434. [Google Scholar] [CrossRef]
- Zheng, Z.; Zheng, L.; Hu, Z.; Yang, Y. Open Set Adversarial Examples. arXiv 2018, arXiv:1809.02681. [Google Scholar]
- Yu, C.; Han, B.; Gong, M.; Shen, L.; Ge, S.; Du, B.; Liu, T. Robust weight perturbation for adversarial training. arXiv 2022, arXiv:2205.14826. [Google Scholar]
- Du, Y.; Mordatch, I. Implicit generation and modeling with energy based models. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 3608–3618. [Google Scholar]
- Hill, M.; Mitchell, J.; Zhu, S.C. Stochastic security: Adversarial defense using long-run dynamics of energy-based models. arXiv 2020, arXiv:2005.13525. [Google Scholar]
- Kang, M.; Tran, T.Q.; Cho, S.; Kim, D. CAP-GAN: Towards adversarial robustness with cycle-consistent attentional purification. In Proceedings of the 2021 International Joint Conference on Neural Networks, Shenzhen, China, 18–22 July 2021; pp. 1–8. [Google Scholar]
- Jin, G.; Shen, S.; Zhang, D.; Dai, F.; Zhang, Y. Ape-gan: Adversarial perturbation elimination with gan. In Proceedings of the ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 12–17 May 2019; pp. 3842–3846. [Google Scholar]
- Qin, H.; Fu, Y.; Zhang, H.; El-Yacoubi, M.A.; Gao, X.; Song, Q.; Wang, J. MsMemoryGAN: A Multi-scale Memory GAN for Palm-vein Adversarial Purification. arXiv 2024, arXiv:2408.10694. [Google Scholar]
- Ankile, L.L.; Midgley, A.; Weisshaar, S. Denoising diffusion probabilistic models as a defense against adversarial attacks. arXiv 2023, arXiv:2301.06871. [Google Scholar]
- Shi, Y.; Du, M.; Wu, X.; Guan, Z.; Sun, J.; Liu, N. Black-box backdoor defense via zero-shot image purification. In Proceedings of the Advances in Neural Information Processing Systems, New Orleans, LA, USA, 10–16 December 2023; pp. 57336–57366. [Google Scholar]
- Sun, J.; Wang, J.; Nie, W.; Yu, Z.; Mao, Z.; Xiao, C. A critical revisit of adversarial robustness in 3D point cloud recognition with diffusion-driven purification. In Proceedings of the International Conference on Machine Learning, Honolulu, HI, USA, 23–29 July 2023; pp. 33100–33114. [Google Scholar]
- Xiao, C.; Chen, Z.; Jin, K.; Wang, J.; Nie, W.; Liu, M.; Song, D. Densepure: Understanding diffusion models for adversarial robustness. In Proceedings of the The Eleventh International Conference on Learning Representations, Virtual, 25–29 April 2023. [Google Scholar]
- Lee, E.; Lee, E.-J.; Anwar, S.M.; Yoo, S.B. Child FER: Domain-Agnostic Facial Expression Recognition in Children Using a Secondary Image Diffusion Model. In Proceedings of the ICASSP 2024—2024 IEEE International Conference on Acoustics, Speech and Signal Processing, Seoul, Republic of Korea, 14–19 April 2024; pp. 2750–2754. [Google Scholar]
- Carlini, N.; Tramer, F.; Dvijotham, K.D.; Rice, L.; Sun, M.; Kolter, J.Z. (Certified!!) Adversarial robustness for free! arXiv 2023, arXiv:2206.10550. [Google Scholar]
- He, Z.; Rakin, A.S.; Fan, D. Parametric noise injection: Trainable randomness to improve deep neural network robustness against adversarial attack. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 588–597. [Google Scholar]
- Goodfellow, I.J. Explaining and harnessing adversarial examples. arXiv 2014, arXiv:1412.6572. [Google Scholar]
- Ristani, E.; Solera, F.; Zou, R.; Cucchiara, R.; Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 17–35. [Google Scholar]
- Wang, X.; Li, S.; Liu, M.; Wang, Y.; Roy-Chowdhury, A.K. Multi-expert adversarial attack detection in person re-identification using context inconsistency. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Nashville, TN, USA, 19–21 June 2021; pp. 15097–15107. [Google Scholar]
Method | Metric-FGSM () | Deep Mis-Ranking () | MetaAttack () | |||
---|---|---|---|---|---|---|
Acc | AUROC | Acc | AUROC | Acc | AUROC | |
LiBRe [20] | - | 0.933 | - | 0.962 | - | 0.913 |
EPS-AD [21] | - | 0.955 | - | 0.972 | - | 0.941 |
MEAAD [81] | 97.30 | 0.980 | 98.50 | 1.000 | 94.02 | 0.944 |
IntensPure [19] | 98.85 | 1.000 | 99.55 | 1.000 | 95.88 | 0.985 |
QuEst (Ours) | 99.08 | 1.000 | 99.71 | 1.000 | 98.69 | 0.991 |
Method | Metric-FGSM () | Deep Mis-Ranking () | MetaAttack () | |||
---|---|---|---|---|---|---|
Acc | AUROC | Acc | AUROC | Acc | AUROC | |
LiBRe [20] | - | 0.945 | - | 0.968 | - | 0.961 |
EPS-AD [21] | - | 0.962 | - | 0.986 | - | 0.975 |
MEAAD [81] | 93.75 | 0.964 | 95.34 | 0.992 | 90.80 | 0.972 |
IntensPure [19] | 96.50 | 0.961 | 97.62 | 0.995 | 91.50 | 0.985 |
QuEst (Ours) | 96.87 | 0.980 | 98.54 | 0.996 | 93.35 | 0.988 |
Method | Metric-FGSM | Deep Mis-Ranking | MetaAttack |
---|---|---|---|
MEAAD [81] | 3.340 | 3.189 | 3.912 |
IntensPure [19] | 0.806 | 0.769 | 1.071 |
QuEst (Ours) | 0.747 | 0.720 | 0.994 |
Method | Metric-FGSM | Deep Mis-Ranking | MetaAttack |
---|---|---|---|
MEAAD [81] | 3.901 | 3.848 | 4.150 |
IntensPure [19] | 1.060 | 0.947 | 1.544 |
QuEst (Ours) | 0.852 | 0.798 | 1.039 |
Attack Method | - | Metric-FGSM | Deep Mis-Ranking | MetaAttack | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Attack Intensity | |||||||||||||
ResNet50 [22] (Baseline) | 88.84 | 52.95 | 20.86 | 4.59 | 0.00 | 66.48 | 29.63 | 11.67 | 5.70 | 67.13 | 38.69 | 8.14 | 3.00 |
DiffPure [9] | 74.73 | 65.08 | 51.54 | 47.12 | 38.93 | 70.54 | 52.02 | 21.29 | 13.00 | 71.59 | 66.33 | 46.02 | 39.73 |
GNSP [18] | 73.25 | 68.17 | 60.77 | 56.04 | 54.44 | 68.43 | 53.15 | 23.16 | 19.71 | 70.98 | 59.59 | 55.61 | 48.75 |
IntensPure [19] | 88.36 | 72.74 | 66.65 | 62.05 | 60.42 | 76.51 | 74.52 | 56.41 | 49.52 | 78.50 | 74.52 | 70.99 | 65.88 |
DiffPure with QuEst | 88.51 | 74.08 | 67.83 | 63.81 | 62.21 | 77.43 | 75.67 | 56.78 | 51.45 | 79.11 | 75.12 | 74.03 | 67.29 |
GNSP with QuEst | 88.51 | 75.16 | 68.24 | 64.03 | 62.84 | 77.20 | 75.33 | 56.45 | 51.78 | 79.22 | 76.59 | 73.30 | 67.05 |
IntensPure with QuEst | 88.40 | 73.15 | 67.00 | 62.98 | 62.56 | 76.98 | 75.02 | 57.83 | 52.07 | 78.83 | 75.96 | 73.04 | 68.11 |
Attack Method | - | Metric-FGSM | Deep Mis-Ranking | MetaAttack | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Attack Intensity | |||||||||||||
ResNet50 [22] (Baseline) | 79.35 | 54.09 | 15.72 | 2.01 | 0.00 | 49.69 | 18.27 | 5.79 | 2.06 | 55.07 | 19.21 | 1.17 | 0.40 |
DiffPure [9] | 70.69 | 62.79 | 52.52 | 46.99 | 42.29 | 69.39 | 49.33 | 42.55 | 21.86 | 63.51 | 63.33 | 57.05 | 53.59 |
GNSP [18] | 69.40 | 63.89 | 50.39 | 45.60 | 41.79 | 64.95 | 51.66 | 43.20 | 35.84 | 68.31 | 64.86 | 59.91 | 56.94 |
IntensPure [19] | 78.95 | 64.99 | 57.59 | 54.62 | 54.13 | 71.32 | 58.35 | 44.83 | 44.61 | 70.60 | 66.42 | 60.57 | 59.69 |
DiffPure with QuEst | 79.15 | 65.20 | 58.12 | 56.15 | 55.00 | 71.54 | 59.61 | 46.57 | 47.50 | 71.62 | 67.91 | 61.50 | 61.30 |
GNSP with QuEst | 79.10 | 65.50 | 58.25 | 56.30 | 55.20 | 71.60 | 59.18 | 46.10 | 47.60 | 71.30 | 67.65 | 62.06 | 61.40 |
IntensPure with QuEst | 79.10 | 65.06 | 58.90 | 56.34 | 56.82 | 71.43 | 59.88 | 46.50 | 47.97 | 71.01 | 68.48 | 61.64 | 61.12 |
Purification Method | FLOPs (G) ↓ | Params (M) ↓ | Time (ms) ↓ |
---|---|---|---|
DiffPure [9] | 583 | 190 | 366 |
GNSP [18] | 530 | 95 | 249 |
IntensPure [19] (only purifier) | 39 | 751 | 59 |
DiffPure with QuEst | 588 (583 + 5) | 217 (190 + 27) | 371 (366 + 5) |
GNSP with QuEst | 535 (530 + 5) | 122 (95 + 27) | 254 (249 + 5) |
IntensPure (only purifier) with QuEst | 44 (39 + 5) | 778 (751 + 27) | 64 (59 + 5) |
Attack Intensity Estimation Method | FLOPs (G) ↓ | Params (M) ↓ | Time (ms) ↓ |
---|---|---|---|
MEAAD [81] | 28 | 212 | 7 |
IntensPure [19] (only estimator) | 11 | 82 | 5 |
QuEst | 5 | 27 | 5 |
Number of Rank Images | 1 | 5 | 10 | 15 | 20 |
---|---|---|---|---|---|
Accuracy ↑ | 81.68 | 97.49 | 99.08 | 98.85 | 98.77 |
Mean absolute error ↓ | 3.413 | 1.209 | 0.747 | 0.806 | 0.850 |
Top-k Similarities | Inter-Rank Similarities | Response Incoherence | Acc ↑ | MAE ↓ |
---|---|---|---|---|
✓ | 92.13 | 4.094 | ||
✓ | 93.77 | 3.614 | ||
✓ | 91.80 | 3.928 | ||
✓ | ✓ | 94.89 | 3.508 | |
✓ | ✓ | 95.18 | 2.480 | |
✓ | ✓ | 97.37 | 1.894 | |
✓ | ✓ | ✓ | 99.08 | 0.747 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, E.G.; Min, C.H.; Yoo, S.B. QuEst: Adversarial Attack Intensity Estimation via Query Response Analysis. Mathematics 2024, 12, 3508. https://doi.org/10.3390/math12223508
Lee EG, Min CH, Yoo SB. QuEst: Adversarial Attack Intensity Estimation via Query Response Analysis. Mathematics. 2024; 12(22):3508. https://doi.org/10.3390/math12223508
Chicago/Turabian StyleLee, Eun Gi, Chi Hyeok Min, and Seok Bong Yoo. 2024. "QuEst: Adversarial Attack Intensity Estimation via Query Response Analysis" Mathematics 12, no. 22: 3508. https://doi.org/10.3390/math12223508
APA StyleLee, E. G., Min, C. H., & Yoo, S. B. (2024). QuEst: Adversarial Attack Intensity Estimation via Query Response Analysis. Mathematics, 12(22), 3508. https://doi.org/10.3390/math12223508