An Analysis of the Lie Symmetry and Conservation Law of a Variable-Coefficient Generalized Calogero–Bogoyavlenskii–Schiff Equation in Nonlinear Optics and Plasma Physics
Abstract
:1. Introduction
2. Painlevé Integrability
3. Lie Symmetry Analysis
3.1. Infinitesimal Generators and Lie Symmetry
- (i)
- .
- (ii)
- .
3.2. The Lie Algebra Commutation Table
4. Nonlinear Self-Adjointness and Conservation Laws
4.1. Nonlinear Self-Adjointness
4.2. Conservation Laws
- Case 1
- The corresponding infinitesimal generators and Lie characteristic functions areThe corresponding conserved vector can be expressed as
- Case 2
- The corresponding infinitesimal generators and Lie characteristic functions areThe corresponding conserved vector can be expressed as
- Case 3
- The corresponding infinitesimal generators and Lie characteristic functions areThe corresponding conserved vector can be expressed as
- Case 4
- The corresponding infinitesimal generators and Lie characteristic functions areThe corresponding conserved vector can be expressed as
- Case 5
- The corresponding infinitesimal generators and Lie characteristic functions areThe corresponding conserved vector can be expressed as
- Case 6
- The corresponding infinitesimal generators and Lie characteristic functions areThe corresponding conserved vector can be expressed as
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clarkson, P.A.; Ablowitz, M.J. Solitons, Nonlinear Evolution Equations and Inverse Scattering; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Wazwaz, A.M. Partial Differential Equations and Solitary Waves Theory; Springer: New York, NY, USA, 2010. [Google Scholar]
- Debnath, L. Nonlnear Partial Differential Equations for Scientists and Engineers; Springer: New York, NY, USA, 2005. [Google Scholar]
- Awrejcewicz, J.; Riaz, M.B.; Junaid-U-Rehman, M.; Jarad, F.; Jhangeer, A. Investigation of wave solutions and conservation laws of generalized Calogero-Bogoyavlenskii-Schiff equation by group theoretic method. Results Phys. 2022, 37, 105479. [Google Scholar]
- Ma, W.X.; Chen, S.T. Lump solutions of a generalized Calogero-Bogoyavlenskii-Schiff equation. Comput. Math. Appl. 2018, 76, 1680–1685. [Google Scholar]
- Zhou, T.Y.; Shen, Y.; Tian, B. In nonlinear optics, fuid dynamics and plasma physics: Symbolic computation on a (2 + 1)-dimensional extended Calogero-Bogoyavlenskii-Schiff system. Eur. Phys. J. Plus 2021, 136, 1–18. [Google Scholar]
- Deng, A.; Ma, H.; Cheng, Q. Solitons, Breathers, and Lump Solutions to the (2 + 1)-Dimensional Generalized Calogero-Bogoyavlenskii-Schiff Equation. Complexity 2021, 2021, 7264345. [Google Scholar]
- Yang, X.; Wang, J.M. Quasi-periodic wave solutions for the (2 + 1)-dimensional generalized Calogero-Bogoyavlenskii-Schifff (CBS)equation. Nonlinear Anal. Theory Methods Appl. 2012, 75, 2256–2261. [Google Scholar]
- Zhang, C.; Jia, J.; Ma, W.X.; Zhou, Y.; Zhang, X. New lump solutions to a (3 + 1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff equation. Appl. Math. Lett. 2023, 141, 108598. [Google Scholar]
- Wazwaz, A.M. Multiple-soliton solutions for the Calogero-Bogoyavlenskii-Schiff, Jimbo-Miwa and YTSF equations. Appl. Math. Comput. 2008, 203, 592–597. [Google Scholar] [CrossRef]
- Wazwaz, A.M. The (2 + 1) and (3 + 1)-dimensional CBS equations: Multiple soliton solutions and multiple singular soliton solutions. Z. Naturforsch. A 2010, 65, 173–181. [Google Scholar] [CrossRef]
- Wazwaz, A.M.; Yue, J.; Zhao, Z.L. Solitons, nonlinear wave transitions and characteristics of quasi-periodic waves for a (3 + 1)-dimensional generalized Calogero Bogoyavlenskii-Schiff equation in fluid mechanics and plasma physics. Chin. J. Phys. 2024, 89, 896–929. [Google Scholar]
- Yang, G.; Jia, T.T.; Li, Y.J. Novel lax pair and many conservation laws to a (2 + 1)-dimensional generalized combined Calogero-Bogoyavlenskii-Schiff-type equation in biohydrodynamics. Appl. Math. Lett. 2024, 152, 109026. [Google Scholar]
- Zhang, Y.; Ye, L.Y.; Lv, Y.N. Grammian solutions to a variable-coefficient KP equation. Chin. Phys. Lett. 2008, 25, 357. [Google Scholar]
- Deka, M.K.; Dev, A.N.; Churikov, D.V.; Mohanty, S.K.; Kravchenko, O.V. The exact solutions of the 2 + 1-dimensional Kadomtsev–Petviashvili equation with variable coefficients by extended generalized G’ G-expansion method. J. King Saud Univ. Sci. 2023, 35, 102358. [Google Scholar]
- Baleanu, D.; Osman, M.S.; Wazwaz, A.M.; Kumar, S.; Dhiman, S.K. Lie symmetries, closed-form solutions, and various dynamical profiles of solitons for the variable coefficient (2 + 1)-dimensional KP equations. Symmetry 2022, 14, 597. [Google Scholar]
- Xia, Y.; Liu, H.; Xin, X.; Zhang, L. Nonlocal symmetries and exact solutions of the (2 + 1)-dimensional generalized variable coefficient shallow water wave equation. Appl. Math. Lett. 2019, 94, 112–119. [Google Scholar]
- Ovsiannikov, L.V. Group Analysis of Differential Equations; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Olver, P.J. Equivalence, Invariants and Symmetry; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Wei, G.M.; Lu, Y.L.; Xie, Y.Q.; Zheng, W.X. Lie symmetry analysis and conservation law of variable-coefficient Davey-Stewartson equation. Comput. Math. Appl. 2018, 75, 3420–3430. [Google Scholar] [CrossRef]
- Kumar, V.; Jiwari, R.; Djurayevich, A.R.; Khudoyberganov, M.U. Hyperbolic (2 + 1)-dimensional Schrödinger equation: Similarity analysis, Optimal system and complexitons for the one-parameter group of rotations. Commun. Nonlinear Sci. Numer. Simul. 2022, 115, 106784. [Google Scholar] [CrossRef]
- Verma, P.; Pandit, S.; Kumar, M.; Kumar, V.; Poonam, P. Time-fractional (2 + 1)-dimensional navier-stokes equations: Similarity reduction and exact solutions for one-parameter lie group of rotations. Phys. Scr. 2023, 98, 075233. [Google Scholar] [CrossRef]
- Weiss, J.; Tabor, M.; Carnevale, G. The Painlevé property for partial differential equations. J. Math. Phys. 1983, 24, 522–526. [Google Scholar] [CrossRef]
- Li, X.N.; Wei, G.M.; Liang, Y.Q. Painlevé analysis and new analytic solutions for variable-coefficient Kadomtsev-Petviashvili equation with symbolic computation. Appl. Math. Comput. 2010, 216, 3568–3577. [Google Scholar] [CrossRef]
- Xu, G.Q. A note on the Painlevé test for nonlinear variable-coefficient PDEs. Comput. Phys. Commun. 2009, 180, 1137–1144. [Google Scholar] [CrossRef]
- Ibragimov, N.H. A new conservation theorem. J. Math. Anal. Appl. 2007, 333, 311–328. [Google Scholar] [CrossRef]
- Ibragimov, N.H. Nonlinear self-adjointness and conservation laws. J. Phys. A-Math. Theor. 2011, 44, 432002. [Google Scholar] [CrossRef]
- Olver, P.J. Application of Lie Groups to Differential Equations; Springer: New York, NY, USA, 1993. [Google Scholar]
0 | 0 | 0 | 0 | |||
0 | 0 | 0 | 0 | 0 | ||
0 | 0 | 0 | 0 | |||
0 | 0 | 0 | 0 | 0 | ||
0 | 0 | 0 | ||||
0 |
0 | 0 | 0 | 0 | |||
0 | 0 | 0 | 0 | 0 | ||
0 | 0 | 0 | ||||
0 | 0 | 0 | 0 | |||
0 | 0 | 0 | ||||
0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, S.; Yin, Z.-Y.; Li, Z.-R.; Pan, C.-Y.; Wei, G.-M. An Analysis of the Lie Symmetry and Conservation Law of a Variable-Coefficient Generalized Calogero–Bogoyavlenskii–Schiff Equation in Nonlinear Optics and Plasma Physics. Mathematics 2024, 12, 3619. https://doi.org/10.3390/math12223619
Miao S, Yin Z-Y, Li Z-R, Pan C-Y, Wei G-M. An Analysis of the Lie Symmetry and Conservation Law of a Variable-Coefficient Generalized Calogero–Bogoyavlenskii–Schiff Equation in Nonlinear Optics and Plasma Physics. Mathematics. 2024; 12(22):3619. https://doi.org/10.3390/math12223619
Chicago/Turabian StyleMiao, Shu, Zi-Yi Yin, Zi-Rui Li, Chen-Yang Pan, and Guang-Mei Wei. 2024. "An Analysis of the Lie Symmetry and Conservation Law of a Variable-Coefficient Generalized Calogero–Bogoyavlenskii–Schiff Equation in Nonlinear Optics and Plasma Physics" Mathematics 12, no. 22: 3619. https://doi.org/10.3390/math12223619
APA StyleMiao, S., Yin, Z. -Y., Li, Z. -R., Pan, C. -Y., & Wei, G. -M. (2024). An Analysis of the Lie Symmetry and Conservation Law of a Variable-Coefficient Generalized Calogero–Bogoyavlenskii–Schiff Equation in Nonlinear Optics and Plasma Physics. Mathematics, 12(22), 3619. https://doi.org/10.3390/math12223619