A Novel Outlier-Robust Accuracy Measure for Machine Learning Regression Using a Non-Convex Distance Metric
Abstract
:1. Introduction
- Outlier-robust: Outliers do not significantly affect the performance assessment.
- Bounded: The result is bounded between 0 and 1, which is highly explainable as a model performance.
- The performance of regression models can be evaluated and assessed without the need to compare them to other methods.
2. Related Work
3. Proposed Metric
4. Experiments Setup
4.1. Common Metrics
4.1.1. Mean Squared Error (MSE)
4.1.2. Root Mean Squared Error (RMSE)
4.1.3. Mean Absolute Error (MAE)
4.1.4. Mean Absolute Percentage Error (MAPE)
4.1.5. Explained Variance (EVS)
4.1.6. Coefficient of Determination
5. Datasets
6. Results and Discussion
6.1. Key Results
6.2. Additional Observations
- Some datasets were easy for regression, such as Real Estate, Concrete, and Combined Cycle Power Plant data, where Random Forest and XGBoost were the best performers, achieving 90%, 91%, and 99.5% MHSP, respectively. This is evident from Table 6, Table 8 and Table 10, where all measures used voted for one regressor. At the same time, there was no significant difference between the performance of different regressors. This indicates that these datasets are easy for regression tasks as their target variables are well distributed, lacking skewness, and outliers, as can be seen in Figure 2 and Figure 3.
- Some measures obtained unconvincing very low values, such as on Forest Fires data using all regressors, or very high values, such as MAPE on the same dataset, which makes it hard for such measures to distinguish the best regressor.
- Full agreement on the best regressor by all measures; this happened three times when using Random Forest on Real Estate Valuation data, XGBoost on Concrete data, and XGBoost on Combined Cycle Power Plant data. This includes the proposed MHSP, which not only voted for the same best classifier, but also provides an accuracy-like, stable, and solid measure.
- In contrast to widely recognized measures such as MAE, MAEP, RMSE, and MSE, the proposed MHSP is bound within the range , offering a more structured evaluation approach.
- The proposed MHSP aligns with at least one common measure when determining the top regressor. Even in cases where it agrees with only a single measure, MHSP delivers a consistent accuracy of approximately 87% for all regressors supported by other measures. This demonstrates that MHSP is a reliable metric and can be utilized as a viable regression measure.
- When designating the best performer as the candidate supported by the most metrics, MHSP played a crucial role in selecting this top-ranked model in four out of the six datasets under examination.
- The concept of interpretability is illustrated through the outcomes displayed in all tables. It is often challenging to understand the significance of typical regression metrics, such as what specific value denotes superior, inferior, or average performance from a regressor. There is no unanimous consensus on defining these values because traditional measures are unable to provide clear definitions. However, the MHSP metric offers a classification accuracy-like assessment, with 100% indicating a flawless regressor devoid of any errors and values around 0% signifying an inaccurate one. The intermediate percentages attempt to depict the actual performance of a regressor. Consequently, it is no longer necessary to compare a regressor against another for interpreting MHSP results. Even when evaluating a single-regression system, MHSP can be employed without having to make comparisons with other regressors, particularly when the percentage achieved is high and satisfactory.
- Some measures provide unexpected values, such as EVS = 0, with very small values for all regressors, or MAPE with very high values; see Table 9. This makes such measures incapable of voting for the best regressor, while MHSP and MHD are more stable and provide a distinctive difference suggesting the best performer.
- Both MHD and MHSP vote for the same best performer in all cases, this is due to the fact that both measures share the same properties of the Hassanat distance metric, as both are derived from the same source.
6.3. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shcherbakov, M.V.; Brebels, A.; Shcherbakova, N.L.; Tyukov, A.P.; Janovsky, T.A.; Kamaev, V.A. A survey of forecast error measures. World Appl. Sci. J. 2013, 24, 171–176. [Google Scholar]
- Mentaschi, L.; Besio, G.; Cassola, F.; Mazzino, A. Problems in RMSE-based wave model validations. Ocean. Model. 2013, 72, 53–58. [Google Scholar] [CrossRef]
- Davydenko, A.; Fildes, R. Forecast error measures: Critical review and practical recommendations. Bus. Forecast. Pract. Probl. Solut. 2016, 34, 1–12. [Google Scholar]
- Tanni, S.E.; Patino, C.M.; Ferreira, J.C. Correlation vs. regression in association studies. J. Bras. Pneumol. 2020, 46, e20200030. [Google Scholar] [CrossRef]
- He, C.; Ma, M.; Wang, P. Extract interpretability-accuracy balanced rules from artificial neural networks: A review. Neurocomputing 2020, 387, 346–358. [Google Scholar] [CrossRef]
- Hassanat, A.B. Dimensionality invariant similarity measure. arXiv 2014, arXiv:1409.0923. [Google Scholar]
- Abu Alfeilat, H.A.; Hassanat, A.B.; Lasassmeh, O.; Tarawneh, A.S.; Alhasanat, M.B.; Eyal Salman, H.S.; Prasath, V.S. Effects of distance measure choice on k-nearest neighbor classifier performance: A review. Big Data 2019, 7, 221–248. [Google Scholar] [CrossRef]
- Hassanat, A.; Alkafaween, E.; Tarawneh, A.S.; Elmougy, S. Applications review of hassanat distance metric. In Proceedings of the 2022 International Conference on Emerging Trends in Computing and Engineering Applications (ETCEA), Karak, Jordan, 23–24 November 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6. [Google Scholar]
- Putri, M.R.; Wijaya, I.G.P.S.; Praja, F.P.A.; Hadi, A.; Hamami, F. The Comparison Study of Regression Models (Multiple Linear Regression, Ridge, Lasso, Random Forest, and Polynomial Regression) for House Price Prediction in West Nusa Tenggara. In Proceedings of the 2023 International Conference on Advancement in Data Science, E-learning and Information System (ICADEIS), Bali, Indonesia, 2–3 August 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar]
- Sreehari, E.; Srivastava, S. Prediction of climate variable using multiple linear regression. In Proceedings of the 2018 4th International Conference on Computing Communication and Automation (ICCCA), Greater Noida, India, 14–15 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–4. [Google Scholar]
- Narloch, P.; Hassanat, A.; Tarawneh, A.S.; Anysz, H.; Kotowski, J.; Almohammadi, K. Predicting compressive strength of cement-stabilized rammed earth based on SEM images using computer vision and deep learning. Appl. Sci. 2019, 9, 5131. [Google Scholar] [CrossRef]
- Kozubal, J.V.; Kania, T.; Tarawneh, A.S.; Hassanat, A.; Lawal, R. Ultrasonic assessment of cement-stabilized soils: Deep learning experimental results. Measurement 2023, 223, 113793. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean squared error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Hodson, T.O. Root mean square error (RMSE) or mean absolute error (MAE): When to use them or not. Geosci. Model Dev. Discuss. 2022, 2022, 1–10. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. Peerj Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef]
- Nakagawa, S.; Johnson, P.C.; Schielzeth, H. The coefficient of determination R 2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 2017, 14, 20170213. [Google Scholar] [CrossRef]
- Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 2010, 1, 103–113. [Google Scholar] [CrossRef]
- De Myttenaere, A.; Golden, B.; Le Grand, B.; Rossi, F. Mean absolute percentage error for regression models. Neurocomputing 2016, 192, 38–48. [Google Scholar] [CrossRef]
- Hyndman, R. Measuring forecast accuracy. In Business Forecasting: Practical Problems and Solutions; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Hyndman, R.J.; Koehler, A.B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688. [Google Scholar] [CrossRef]
- Kreinovich, V.; Nguyen, H.T.; Ouncharoen, R. How to Estimate Forecasting Quality: A System-Motivated Derivation of Symmetric Mean Absolute Percentage Error (SMAPE) and Other Similar Characteristics; Technical Report UTEP-CS-14-53; The University of Texas: El Paso, TX, USA, 2014. [Google Scholar]
- Moreno, J.J.M.; Pol, A.P.; Abad, A.S.; Blasco, B.C. Using the R-MAPE index as a resistant measure of forecast accuracy. Psicothema 2013, 25, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Plevris, V.; Solorzano, G.; Bakas, N.P.; Ben Seghier, M.E.A. Investigation of performance metrics in regression analysis and machine learning-based prediction models. In Proceedings of the 8th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS Congress 2022), Oslo, Norway, 5–9 June 2022; European Community on Computational Methods in Applied Sciences: Barcelona, Spain, 2022. [Google Scholar]
- Sluijterman, L.; Cator, E.; Heskes, T. How to evaluate uncertainty estimates in machine learning for regression? Neural Netw. 2024, 173, 106203. [Google Scholar]
- Cao, C.; Bao, Y.; Shi, Q.; Shen, Q. Dynamic Spatiotemporal Correlation Graph Convolutional Network for Traffic Speed Prediction. Symmetry 2024, 16, 308. [Google Scholar] [CrossRef]
- Karabulut, B.; Arslan, G.; Ünver, H.M. A weighted similarity measure for k-nearest neighbors algorithm. Celal Bayar Univ. J. Sci. 2019, 15, 393–400. [Google Scholar] [CrossRef]
- Kim, M.; Kim, Y.; Kim, H.; Piao, W.; Kim, C. Evaluation of the k-nearest neighbor method for forecasting the influent characteristics of wastewater treatment plant. Front. Environ. Sci. Eng. 2016, 10, 299–310. [Google Scholar] [CrossRef]
- Na, J.; Wang, Z.; Lv, S.; Xu, Z. An extended K nearest neighbors-based classifier for epilepsy diagnosis. IEEE Access 2021, 9, 73910–73923. [Google Scholar] [CrossRef]
- Veerachamy, R.; Ramar, R. Agricultural Irrigation Recommendation and Alert (AIRA) system using optimization and machine learning in Hadoop for sustainable agriculture. Environ. Sci. Pollut. Res. 2022, 29, 19955–19974. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.; Sarfraz, S.; Chesneau, C.; Ul Hassan, M.; Raza, M.A.; Sherwani, R.A.K.; Jamal, F. Computing expectiles using k-nearest neighbours approach. Symmetry 2021, 13, 645. [Google Scholar] [CrossRef]
- Tarawneh, A.S.; Celik, C.; Hassanat, A.B.; Chetverikov, D. Detailed investigation of deep features with sparse representation and dimensionality reduction in cbir: A comparative study. Intell. Data Anal. 2020, 24, 47–68. [Google Scholar] [CrossRef]
- Biswas, R.; Roy, S.; Biswas, A. Triplet Contents based Medical Image Retrieval System for Lung Nodules CT Images Retrieval and Recognition Application. Int. J. Eng. Adv. Technol. (IJEAT) 2019, 8, 3132–3143. [Google Scholar] [CrossRef]
- Nasiri, E.; Milanova, M.; Nasiri, A. Masked Face Detection Using Artificial Intelligent Techniques. In Proceedings of the New Approaches for Multidimensional Signal Processing: Proceedings of International Workshop, NAMSP 2021, Sofia, Bulgaria, 8–10 July 2021; Springer: Berlin/Heidelberg, Germany, 2022; pp. 3–34. [Google Scholar]
- Hassanat, A.B.A.; Btoush, E.; Abbadi, M.A.; Al-Mahadeen, B.M.; Al-Awadi, M.; Mseidein, K.I.A.; Almseden, A.M.; Tarawneh, A.S.; Alhasanat, M.B.; Prasath, V.B.S.; et al. Victory Sign Biometric for Terrorists Identification: Preliminary Results, Presentation. In Proceedings of the 2017 8th International Conference on Information and Communication Systems, Irbid, Jordan, 4–6 April 2017. [Google Scholar]
- Hassanat, A.B. On identifying terrorists using their victory signs. Data Sci. J. 2018, 17, 27. [Google Scholar] [CrossRef]
- Ehsani, R.; Drabløs, F. Robust distance measures for kNN classification of cancer data. Cancer Inform. 2020, 19, 1176935120965542. [Google Scholar] [CrossRef]
- Stout, A. Fine-Tuning a k-Nearest Neighbors Machine Learning Model for the Detection of Insurance Fraud. Honors Thesis. 2022. Available online: https://aquila.usm.edu/honors_theses/863/ (accessed on 20 June 2024).
- Rezvani, S.; Wang, X. A broad review on class imbalance learning techniques. Appl. Soft Comput. 2023, 143, 110415. [Google Scholar] [CrossRef]
- Hassanat, A.; Altarawneh, G.; Alkhawaldeh, I.M.; Alabdallat, Y.J.; Atiya, A.F.; Abujaber, A.; Tarawneh, A.S. The jeopardy of learning from over-sampled class-imbalanced medical datasets. In Proceedings of the 2023 IEEE Symposium on Computers and Communications (ISCC), Gammarth, Tunisia, 9–12 July 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–7. [Google Scholar]
- Anwar, M.; Hellwich, O. An Embedded Neural Network Approach for Reinforcing Deep Learning: Advancing Hand Gesture Recognition. J. Univ. Comput. Sci. 2024, 30, 957. [Google Scholar]
- Al-Nuaimi, D.H.; Isa, N.A.M.; Akbar, M.F.; Abidin, I.S.Z. Amc2-pyramid: Intelligent pyramidal feature engineering and multi-distance decision making for automatic multi-carrier modulation classification. IEEE Access 2021, 9, 137560–137583. [Google Scholar] [CrossRef]
- Kancharla, C.R.; Vankeirsbilck, J.; Vanoost, D.; Boydens, J.; Hallez, H. Latent dimensions of auto-encoder as robust features for inter-conditional bearing fault diagnosis. Appl. Sci. 2022, 12, 965. [Google Scholar] [CrossRef]
- Özarı, Ç.; Can, E.N.; Alıcı, A. Forecasting sustainable development level of selected Asian countries using M-EDAS and k-NN algorithm. Int. J. Soc. Sci. Educ. Res. 2023, 9, 101–112. [Google Scholar] [CrossRef]
- Kartal, E.; Çalışkan, F.; Eskişehirli, B.B.; Özen, Z. p-adic distance and k-Nearest Neighbor classification. Neurocomputing 2024, 578, 127400. [Google Scholar] [CrossRef]
- Nasiri, E.; Milanova, M.; Nasiri, A. Video Surveillance Framework Based on Real-Time Face Mask Detection and Recognition. In Proceedings of the 2021 International Conference on INnovations in Intelligent SysTems and Applications (INISTA), Kocaeli, Turkey, 25–27 August 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–7. [Google Scholar]
- Begovic, M.; Causevic, S.; Memic, B.; Haskovic, A. AI-aided traffic differentiated QoS routing and dynamic offloading in distributed fragmentation optimized SDN-IoT. Int. J. Eng. Res. Technol. 2020, 13, 1880–1895. [Google Scholar] [CrossRef]
- Alkanhel, R.; Chaaf, A.; Samee, N.A.; Alohali, M.A.; Muthanna, M.S.A.; Poluektov, D.; Muthanna, A. Dedg: Cluster-based delay and energy-aware data gathering in 3d-uwsn with optimal movement of multi-auv. Drones 2022, 6, 283. [Google Scholar] [CrossRef]
- Hase, V.J.; Bhalerao, Y.J.; Verma, S.; Wakchaure, V.; Vikhe, G. Intelligent threshold prediction in hybrid mesh segmentation using machine learning classifiers. Int. J. Manag. Technol. Eng. 2018, 8, 1426–1442. [Google Scholar]
- Uddin, S.; Haque, I.; Lu, H.; Moni, M.A.; Gide, E. Comparative performance analysis of K-nearest neighbour (KNN) algorithm and its different variants for disease prediction. Sci. Rep. 2022, 12, 6256. [Google Scholar] [CrossRef]
- Jiřina, M.; Krayem, S. The Distance Function Optimization for the Near Neighbors-Based Classifiers. ACM Trans. Knowl. Discov. Data (TKDD) 2022, 16, 1–21. [Google Scholar] [CrossRef]
- Hofer, E.; v. Mohrenschildt, M. Locally-Scaled Kernels and Confidence Voting. Mach. Learn. Knowl. Extr. 2024, 6, 1126–1144. [Google Scholar] [CrossRef]
- Kelly, M.; Longjohn, R.; Nottingham, K. The UCI Machine Learning Repository. 2024. Available online: https://archive.ics.uci.edu/ (accessed on 24 October 2024).
- Gebetsberger, M.; Messner, J.W.; Mayr, G.J.; Zeileis, A. Estimation methods for nonhomogeneous regression models: Minimum continuous ranked probability score versus maximum likelihood. Mon. Weather. Rev. 2018, 146, 4323–4338. [Google Scholar] [CrossRef]
- Gouttes, A.; Rasul, K.; Koren, M.; Stephan, J.; Naghibi, T. Probabilistic time series forecasting with implicit quantile networks. arXiv 2021, arXiv:2107.03743. [Google Scholar]
- Boyko, J.D.; O’Meara, B.C. Dentist: Quantifying uncertainty by sampling points around maximum likelihood estimates. Methods Ecol. Evol. 2024, 15, 628–638. [Google Scholar] [CrossRef]
- Maddox, W.J.; Izmailov, P.; Garipov, T.; Vetrov, D.P.; Wilson, A.G. A simple baseline for bayesian uncertainty in deep learning. Adv. Neural Inf. Process. Syst. 2019, 32, 13153–13164. [Google Scholar]
- Hersbach, H. Decomposition of the continuous ranked probability score for ensemble prediction systems. Weather. Forecast. 2000, 15, 559–570. [Google Scholar] [CrossRef]
Regression Metrics | Limitations |
---|---|
Mean Squared Error (MSE) | Sensitive to outliers, lack of interpretability, scale dependence. |
Mean Absolute Error (MAE) | Never differentiable at zero; can be a restriction in some, derivative-based optimization strategies, scale dependence [1]. |
Root Mean Squared Error (RMSE) | Sensitive to outliers, scale dependence [2]. |
Mean Absolute Percentage Error (MAPE) | Sensitivity to zero values: when the actual values are zero or near zero, MAPE can produce undefined or endless percentage errors, scale dependence [3] |
R-squared () | Sensitive to outliers, affected by the sample size: might give misleading results, cannot distinguish between linear and non-linear relationships, no universal definition for the strength of a correlation [4,5] |
Regression Metric | Range | Perfect Match |
---|---|---|
Mean Bias | ] | 0 |
Mean Absolute Gross Error | ] | 0 |
Root Mean Squared Error | ] | 0 |
Centered Root Mean Squared Difference | ] | 0 |
Mean Normalized Bias | ] | 0 |
Mean Normalized Gross Error | ] | 0 |
Normalized Mean Bias | ] | 0 |
Normalized Mean Error | ] | 0 |
Fractional Bias | ] | 0 |
Fractional Gross Error | ] | 0 |
Theil’s UI | ] | 0 |
Index of Agreement | ] | 1 |
Pearson Correlation Coefficient | ] | 1 |
Variance Accounted For | ] | 1 |
Instances | MODEL1 | MODEL2 | ||
---|---|---|---|---|
Actual Y | Predicted X | Actual Y | Predicted X | |
1 | 1 | 1.5 | 1 | 4 |
2 | 1.1 | 1 | 1.1 | 3 |
3 | 1 | 30 | 1 | 5 |
4 | 2 | 2 | 2 | 3 |
5 | 2.3 | 2 | 2.3 | 6 |
6 | 1.6 | 2.1 | 1.6 | 2.1 |
7 | 3 | 3.2 | 3 | 3.2 |
8 | 1.6 | 1.2 | 1.6 | 1.2 |
9 | 2.5 | 3 | 2.5 | 3 |
10 | 1 | 1.4 | 1 | 1.4 |
Measure | MODEL1 | MODEL2 |
---|---|---|
Mean actual Y | 1.71 | 1.71 |
Mean predicted X | 4.74 | 1.71 |
HasD | 1.928434 | 3.1746603 |
MAE | 3.19 | 1.56 |
MAPE | 3.095051 | 1.2065135 |
SMAPE | 3.225 | 2.45 |
RMSE | 9.1772 | 2.1014281 |
MSE | 84.221 | 4.416 |
−180.942 | −8.5398574 | |
MHD | 0.192843 | 0.317466 |
MHSP | 80.72% | 68.25% |
Dataset | # of Observations | # of Features | Target |
---|---|---|---|
Real Estate Valuation | 414 | 6 | Price |
Average Localization Error (ALE) | 107 | 4 | ALE |
Concrete Compressive Strength | 1030 | 8 | Compr. Strength |
Forest Fires | 517 | 12 | Area |
Combined Cycle Power Plant | 9568 | 4 | EP |
Abalone | 4177 | 8 | Rings |
Regression | MAE | MSE | RMSE | MAPE | EVS | MHD | MHSP % | |
---|---|---|---|---|---|---|---|---|
Ridge Regression | 0.656 | 5.584 | 57.673 | 7.594 | 0.185 | 0.656 | 0.149 | 85.061 |
Huber Regression | 0.638 | 5.577 | 60.663 | 7.789 | 0.185 | 0.639 | 0.150 | 85.039 |
Theil–Sen Regression | 0.606 | 5.740 | 66.082 | 8.129 | 0.208 | 0.632 | 0.176 | 82.438 |
Quantile Regression | 0.558 | 6.558 | 74.204 | 8.614 | 0.223 | 0.558 | 0.171 | 82.934 |
Random Forest | 0.810 | 3.867 | 31.859 | 5.644 | 0.120 | 0.811 | 0.099 | 90.103 |
XGBoost | 0.796 | 3.947 | 34.170 | 5.845 | 0.124 | 0.796 | 0.103 | 89.698 |
KNN | 0.611 | 6.103 | 65.179 | 8.073 | 0.186 | 0.631 | 0.146 | 85.415 |
Regression | MAE | MSE | RMSE | MAPE | EVS | MHD | MHSP % | |
---|---|---|---|---|---|---|---|---|
Ridge Regression | 0.568 | 0.106 | 0.023 | 0.153 | 2.033 | 0.568 | 0.071 | 92.895 |
Huber Regression | 0.553 | 0.098 | 0.024 | 0.155 | 1.050 | 0.556 | 0.065 | 93.550 |
Theil–Sen Regression | 0.559 | 0.104 | 0.024 | 0.154 | 0.892 | 0.559 | 0.069 | 93.149 |
Quantile Regression | 0.337 | 0.115 | 0.036 | 0.189 | 1.113 | 0.355 | 0.075 | 92.549 |
Random Forest | 0.480 | 0.123 | 0.028 | 0.167 | 1.460 | 0.493 | 0.081 | 91.877 |
XGBoost | 0.418 | 0.101 | 0.031 | 0.177 | 1.249 | 0.437 | 0.063 | 93.697 |
KNN | 0.520 | 0.102 | 0.026 | 0.161 | 1.304 | 0.540 | 0.067 | 93.277 |
Regression | MAE | MSE | RMSE | MAPE | EVS | MHD | MHSP % | |
---|---|---|---|---|---|---|---|---|
Ridge Regression | 0.628 | 7.746 | 95.971 | 9.796 | 0.293 | 0.628 | 0.196 | 80.423 |
Huber Regression | 0.559 | 7.808 | 113.670 | 10.662 | 0.279 | 0.562 | 0.188 | 81.228 |
Theil–Sen Regression | −0.120 | 9.561 | 288.580 | 16.988 | 0.301 | −0.068 | 0.193 | 80.725 |
Quantile Regression | 0.570 | 7.970 | 110.900 | 10.531 | 0.307 | 0.573 | 0.197 | 80.308 |
Random Forest | 0.884 | 3.736 | 29.854 | 5.464 | 0.123 | 0.887 | 0.103 | 89.662 |
XGBoost | 0.918 | 2.996 | 21.218 | 4.606 | 0.100 | 0.919 | 0.086 | 91.393 |
KNN | 0.737 | 6.442 | 67.762 | 8.232 | 0.238 | 0.743 | 0.171 | 82.907 |
Regression | MAE | MSE | RMSE | MAPE | EVS | MHD | MHSP % | |
---|---|---|---|---|---|---|---|---|
Ridge Regression | 0.004 | 24.399 | 11,740.330 | 108.353 | 0.011 | 0.721 | 27.884 | |
Huber Regression | −0.026 | 19.659 | 12,089.042 | 109.950 | 0.001 | 0.592 | 40.769 | |
Theil–Sen Regression | −0.017 | 20.407 | 11,983.918 | 109.471 | 0.003 | 0.657 | 34.316 | |
Quantile Regression | −0.030 | 19.621 | 12,145.666 | 110.207 | 0.000 | 0.509 | 49.084 | |
Random Forest | −0.015 | 27.011 | 11,960.393 | 109.364 | −0.012 | 0.743 | 25.699 | |
XGBoost | −0.065 | 26.846 | 12,554.664 | 112.048 | −0.060 | 0.702 | 29.763 | |
KNN | −0.008 | 26.136 | 11,886.223 | 109.024 | −0.003 | 0.694 | 30.640 |
Regression | MAE | MSE | RMSE | MAPE | EVS | MHD | MHSP % | |
---|---|---|---|---|---|---|---|---|
Ridge Regression | 0.931 | 3.543 | 19.608 | 4.428 | 0.008 | 0.932 | 0.008 | 99.225 |
Huber Regression | 0.915 | 3.924 | 24.190 | 4.918 | 0.009 | 0.916 | 0.009 | 99.145 |
Theil–Sen Regression | 0.932 | 3.527 | 19.507 | 4.417 | 0.008 | 0.932 | 0.008 | 99.228 |
Quantile Regression | 0.902 | 4.249 | 28.171 | 5.308 | 0.009 | 0.902 | 0.009 | 99.075 |
Random Forest | 0.964 | 2.260 | 10.159 | 3.187 | 0.005 | 0.965 | 0.005 | 99.506 |
XGBoost | 0.967 | 2.204 | 9.386 | 3.064 | 0.005 | 0.967 | 0.005 | 99.517 |
KNN | 0.947 | 2.877 | 15.115 | 3.888 | 0.006 | 0.947 | 0.006 | 99.371 |
Regression | MAE | MSE | RMSE | MAPE | EVS | MHD | MHSP % | |
---|---|---|---|---|---|---|---|---|
Ridge Regression | 0.539 | 1.611 | 4.990 | 2.234 | 0.163 | 0.539 | 0.129 | 87.120 |
Huber Regression | 0.533 | 1.566 | 5.051 | 2.248 | 0.152 | 0.542 | 0.124 | 87.573 |
Theil–Sen Regression | 0.536 | 1.605 | 5.026 | 2.242 | 0.161 | 0.538 | 0.129 | 87.132 |
Quantile Regression | −0.073 | 2.378 | 11.617 | 3.408 | 0.247 | 0.000 | 0.183 | 81.656 |
Random Forest | 0.531 | 1.581 | 5.073 | 2.252 | 0.155 | 0.532 | 0.123 | 87.665 |
XGBoost | 0.471 | 1.655 | 5.721 | 2.392 | 0.163 | 0.472 | 0.128 | 87.168 |
KNN | 0.526 | 1.556 | 5.130 | 2.265 | 0.151 | 0.528 | 0.122 | 87.841 |
Dataset | Abalone | Forest Fires | Real Estate | ALE | CCPP | Concrete |
---|---|---|---|---|---|---|
Ridge Regression | 1.666 | 3.607 | 2.276 | 1.149 | 1.992 | 2.407 |
Huber Regression | 1.728 | 3.610 | 2.297 | 1.335 | 2.050 | 2.439 |
Theil–Sen Regression | 1.695 | 3.610 | 2.327 | 0.950 | 1.984 | 2.665 |
Quantile Regression | 1.943 | 3.611 | 2.342 | 1.436 | 2.094 | 2.433 |
Random Forest | 1.659 | 3.613 | 2.118 | 1.914 | 1.837 | 2.138 |
XGBoost | 1.693 | 3.624 | 2.149 | 1.626 | 1.817 | 2.057 |
KNN | 1.700 | 3.611 | 2.267 | 1.150 | 1.936 | 2.332 |
MSHP Voted for | KNN | QR | ✓RF | XGB | ✓XGB | ✓XGB |
Others Voted for | none | R, MSE, RMSE, EVS | all | MAPE | all | all |
MHSP of Best % | 88/88 | 28/49 | 90/90 | 93/94 | 99/99 | 91/ 91 |
Dataset | Abalone | Forest Fires | Real Estate | ALE | CCPP | Concrete |
---|---|---|---|---|---|---|
Ridge Regression | 0.019 | 2.766 | −0.050 | −0.024 | 0.258 | 0.484 |
Huber Regression | 0.101 | 5.390 | −0.157 | −0.010 | 0.181 | 0.441 |
Theil–Sen Regression | 0.060 | 4.170 | 1.197 | −0.016 | 0.295 | 0.537 |
Quantile Regression | 0.455 | 7.841 | 0.393 | −0.006 | 0.523 | 0.548 |
Random Forest | 0.009 | 1.627 | −0.125 | −0.013 | 0.018 | 0.091 |
XGBoost | 0.068 | 12.284 | −0.090 | 0.007 | 0.006 | 0.087 |
KNN | 0.087 | 2.474 | 0.166 | −0.018 | 0.028 | 0.201 |
MSHP Voted for | KNN | QR | RF | XGB | ✓XGB | ✓XGB |
Others Voted for | none | none | none | R, MSE, RMSE, EVS | all | all |
MHSP of Best % | 88/88 | 26/49 | 85/90 | 93/94 | 99/99 | 91/91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassanat, A.B.; Alqaralleh, M.K.; Tarawneh, A.S.; Almohammadi, K.; Alamri, M.; Alzahrani, A.; Altarawneh, G.A.; Alhalaseh, R. A Novel Outlier-Robust Accuracy Measure for Machine Learning Regression Using a Non-Convex Distance Metric. Mathematics 2024, 12, 3623. https://doi.org/10.3390/math12223623
Hassanat AB, Alqaralleh MK, Tarawneh AS, Almohammadi K, Alamri M, Alzahrani A, Altarawneh GA, Alhalaseh R. A Novel Outlier-Robust Accuracy Measure for Machine Learning Regression Using a Non-Convex Distance Metric. Mathematics. 2024; 12(22):3623. https://doi.org/10.3390/math12223623
Chicago/Turabian StyleHassanat, Ahmad B., Mohammad Khaled Alqaralleh, Ahmad S. Tarawneh, Khalid Almohammadi, Maha Alamri, Abdulkareem Alzahrani, Ghada A. Altarawneh, and Rania Alhalaseh. 2024. "A Novel Outlier-Robust Accuracy Measure for Machine Learning Regression Using a Non-Convex Distance Metric" Mathematics 12, no. 22: 3623. https://doi.org/10.3390/math12223623
APA StyleHassanat, A. B., Alqaralleh, M. K., Tarawneh, A. S., Almohammadi, K., Alamri, M., Alzahrani, A., Altarawneh, G. A., & Alhalaseh, R. (2024). A Novel Outlier-Robust Accuracy Measure for Machine Learning Regression Using a Non-Convex Distance Metric. Mathematics, 12(22), 3623. https://doi.org/10.3390/math12223623