An Efficient Quadrature Rule for Highly Oscillatory Integrals with Airy Function
Abstract
:1. Introduction
2. The Filon-Type Method for
3. Complex Integration Method for
3.1. Complex Integration Formulas
3.2. Numerical Algorithms and Error Estimates
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cai, W. Computational Methods for Electromagnetic Phenomena: Electrostatics in Solvation, Scattering, and Electron Transport; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Colton, D.; Kress, R. Integral Equation Methods in Scattering Theory; SIAM: Philadelphia, PA, USA, 2013. [Google Scholar]
- Iserles, A. On the numerical quadrature of highly-oscillating integrals I: Fourier transforms. IMA J. Numer. Anal. 2004, 24, 365–391. [Google Scholar] [CrossRef]
- Iserles, A. On the numerical quadrature of highly-oscillating integrals II: Irregular oscillators. IMA J. Numer. Anal. 2005, 25, 25–44. [Google Scholar] [CrossRef]
- Iserles, A.; Nørsett, S. Efficient quadrature of highly oscillatory integrals using derivatives. Proc. R. Soc. A 2005, 461, 1383–1399. [Google Scholar] [CrossRef]
- Patidar, K.; Shikongo, A. The application of asymptotic analysis for developing reliable numerical method for a model singular perturbation problem. J. Numer. Anal. Ind. Appl. Math. 2007, 2, 193–207. [Google Scholar]
- Chung, K.; Evans, G.; Webster, J. A method to generate generalized quadrature rules for oscillatory integrals. Appl. Numer. Math. 2000, 34, 85–93. [Google Scholar] [CrossRef]
- Debnath, P.; Srivastava, H.; Chakraborty, K.; Kumam, P. Advances in Number Theory and Applied Analysis; World Scientific: Singapore, 2023. [Google Scholar]
- Engquist, B.; Fokas, A.; Hairer, E.; Iserles, A. Highly Oscillatory Problems; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Hazarika, B.; Acharjee, S.; Srivastava, H. Advances in Mathematical Analysis and Its Applications; CRC Press: New York, NY, USA, 2022. [Google Scholar]
- Kang, H. Numerical integration of oscillatory Airy integrals with singularities on an infinite interval. J. Comput. Appl. Math. 2018, 333, 314–326. [Google Scholar] [CrossRef]
- Olver, S. Numerical approximation of vector-valued highly oscillatory integrals. BIT Numer. Math. 2007, 47, 637–655. [Google Scholar] [CrossRef]
- Olver, F.; Lozier, D.; Boisvert, R.; Clark, C. NIST Handbook of Mathematical Functions; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Xu, Z.; Xiang, S. Numerical evaluation of a class of highly oscillatory integrals involving Airy functions. Appl. Math. Comput. 2014, 246, 54–63. [Google Scholar] [CrossRef]
- Levin, D. Fast integration of rapidly oscillatory functions. J. Comput. Appl. Math. 1996, 67, 95–101. [Google Scholar] [CrossRef]
- Xiang, S.; Wang, H. Fast integration of highly oscillatory integrals with exotic oscillators. Math. Comp. 2010, 79, 829–844. [Google Scholar] [CrossRef]
- Kang, H.; Wang, H. Asymptotic analysis and numerical methods for oscillatory infinite generalized Bessel transforms with an irregular oscillator. J. Sci. Comput. 2020, 82, 29. [Google Scholar] [CrossRef]
- Olver, S. Numerical Approximation of Highly Oscillatory Integrals. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2007. [Google Scholar]
- Filon, L. On the quadrature formula for trigonometric integrals. Proc. R. Soc. Edinb. 1928, 49, 38–47. [Google Scholar] [CrossRef]
- Wang, H. A unified framework for asymptotic analysis and computation offinite Hankel transform. J. Math. Anal. Appl. 2020, 483, 123640. [Google Scholar] [CrossRef]
- López, J.; Temme, N. Two-point Taylor expansions of analytic functions. Stud. Appl. Math. 2002, 109, 297–311. [Google Scholar] [CrossRef]
- Oreshkin, B. MeijerG, MATLAB Central File Exchange. 2023. Available online: https://www.mathworks.com/matlabcentral/fileexchange/31490-meijerg (accessed on 19 December 2023).
- Gradshteyn, I.; Ryzhik, I. Table of Integrals, Series, and Products, 8th ed.; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Lang, S. Complex Analysis, 4th ed.; Springer: New York, NY, USA, 1999. [Google Scholar]
- Chen, R. Numerical approximations to integrals with a highly oscillatory Bessel kernel. Appl. Numer. Math. 2012, 62, 636–648. [Google Scholar] [CrossRef]
- Zaman, S.; Siraj-ul-Islam; Khan, M.; Ahmad, I. New algorithms for approximation of Bessel transforms with high frequency parameter. J. Comput. Appl. Math. 2022, 299, 113705. [Google Scholar] [CrossRef]
- Huybrechs, D.; Vandewalle, S. On the evaluation of highly oscillatory integrals by analytic continuation. SIAM J. Numer. Anal. 2006, 44, 1026–1048. [Google Scholar] [CrossRef]
- Milovanović, G. Numerical calculation of integrals involving oscillatory and singular kernels and some applications of quadratures. Comput. Math. Appl. 1998, 36, 19–39. [Google Scholar] [CrossRef]
- Glaser, A.; Liu, X.; Rokhlin, V. A fast algorithm for the calculation of the roots of special functions. SIAM J. Sci. Comput. 2007, 29, 1420–1438. [Google Scholar] [CrossRef]
- Hale, N.; Trefethen, L. Chebfun and numerical quadrature. Sci. China Math. 2012, 55, 1749–1760. [Google Scholar] [CrossRef]
- Evans, G.; Chung, K. Some theoretical aspects of generalised quadrature methods. J. Complex. 2003, 19, 272–285. [Google Scholar] [CrossRef]
n () | ||||||
---|---|---|---|---|---|---|
1 | ||||||
2 | ||||||
3 | ||||||
4 | ||||||
5 | ||||||
Exact values | 0.5786450 | 0.0137262 | 0.0051914 | 0.0018297 | 0.0006740 | 0.0002367 |
(Mathematica) | 00855307 | 61972158 | 39052109 | 30968546 | 91854124 | 76298767 |
n () | ||||||
---|---|---|---|---|---|---|
1 | ||||||
2 | ||||||
3 | ||||||
4 | ||||||
5 | ||||||
Exact values | 0.0108855 | 0.0034428 | 0.0024344 | 0.0017214 | 0.0012172 | 0.0008607 |
(Mathematica) | 10568092 | 84873791 | 87277255 | 42464043 | 43639445 | 21232015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Xu, Z.; Li, B. An Efficient Quadrature Rule for Highly Oscillatory Integrals with Airy Function. Mathematics 2024, 12, 377. https://doi.org/10.3390/math12030377
Liu G, Xu Z, Li B. An Efficient Quadrature Rule for Highly Oscillatory Integrals with Airy Function. Mathematics. 2024; 12(3):377. https://doi.org/10.3390/math12030377
Chicago/Turabian StyleLiu, Guidong, Zhenhua Xu, and Bin Li. 2024. "An Efficient Quadrature Rule for Highly Oscillatory Integrals with Airy Function" Mathematics 12, no. 3: 377. https://doi.org/10.3390/math12030377
APA StyleLiu, G., Xu, Z., & Li, B. (2024). An Efficient Quadrature Rule for Highly Oscillatory Integrals with Airy Function. Mathematics, 12(3), 377. https://doi.org/10.3390/math12030377