Homological Landscape of Human Brain Functional Sub-Circuits
Abstract
:1. Introduction
2. Formalism
2.1. Graph, Induced Subgraph, Clique Complex
2.2. Filtration by Weights and Persistent Homology
- is essential the 1-skeleton scaffold where all nodes are perfectly coupled (), which results in an empty graph.
- is always an induced subgraph of for all .
- The sequence starts with an empty graph (homeomorphic to ) and ends with a complete graph (or a clique of n nodes) (homeomorphic to simplicial complex of size n, i.e., ).
2.3. Functional Connectomes and Mesoscopic Structures
2.3.1. Localized Mesoscopic Structures
2.3.2. Non-Localized Mesoscopic Structures
2.4. Consolidated/Super Graph
3. Results
3.1. Data
- REST: Eye open with relaxed fixation on a bright cross-hair with dark background. A total of 1200 time points were obtained with 720 ms TR.
- EMOTION: Subject was instructed to match two faces (or shapes) shown from the bottom to the top of the screen. Faces were shown with angry/fearful expressions. Each scan involved three face blocks and three shape blocks with eight seconds of fixation.
- GAMBLING: Implied a card-playing game wherein the subject needed to guess a number of cards in order to win or lose money. At each trial, the subject was instructed to guess whether a card had a value greater or smaller than 5, given that the numerical range of the cards was between 1 and 9. The subjects had 1.5 s to respond and 1 second of feedback.
- LANGUAGE: At each scan, four blocks of story tasks and four blocks of math tasks were presented to the subject. The stories contained brief auditory information followed by a choice of questions about the story topics. The math tasks contained arithmetic questions with a similar level of difficulty compared to the story task.
- MOTOR: The subjects were shown various cues and instructed to either tap (left and right) fingers, squeeze (left or right) toes, or move their tongue in response to different areas of the human brain motor cortex. The task contained a total of 10 movements (12 s per movement), preceded by a 3-s cue.
- RELATIONAL: The subjects were presented with six shapes along with six different textures. Given two pairs of objects (one on the top and the other one at the bottom of the screen), the subject had to decide whether the shape (or texture) differed across the pair on the top screen. In addition, they had to decide whether the same difference was carried over to the bottom pair.
- SOCIAL: The subjects were shown a 20-s video clip containing randomly moving objects of various geometrical shapes (squares, circles, triangles, etc.). After that, the subjects were instructed to respond to whether these objects had any mental interactions (shapes took into account feelings and thoughts), and respond by either Undecided or No Interactions.
- WORKING MEMORY: The subjects were presented with trials of tools, faces, and body parts. Four different stimulus types were presented in each run. In addition, at each run, two types of memory tasks were presented: two-back and zero-back memory tasks.
3.2. Group Analysis: Macroscopic WHOLE-BRAIN LEVEL
3.3. Group Analysis: Consolidated Graph
3.4. Group Analysis: Functional Network (Mesoscopic) Level
3.4.1. Resting State Analysis
3.5. Individual Subject Analysis
3.5.1. Macroscopic Whole-Brain Level
3.5.2. All-to-REST, Mesoscopic Analysis
3.5.3. All-to-REST, Task Analysis
4. Discussion
5. Conclusions and Future Work
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TDA | Topological data analysis |
FCs | Functional connectomes |
FN | Functional network |
VIS | Visual |
SM | SomatoMotor |
DA | Dorsal atention |
VA | Ventral attention |
LIM | Limbic |
FP | Frontopatietal |
DMN | Default mode network |
SUBC | Sub-cortical regions |
KL divergence | Kullback–Leibler divergence |
References
- Battiston, F.; Amico, E.; Barrat, A.; Bianconi, G.; Ferraz de Arruda, G.; Franceschiello, B.; Iacopini, I.; Kéfi, S.; Latora, V.; Moreno, Y.; et al. The physics of higher-order interactions in complex systems. Nat. Phys. 2021, 17, 1093–1098. [Google Scholar] [CrossRef]
- Giusti, C.; Pastalkova, E.; Curto, C.; Itskov, V. Clique topology reveals intrinsic geometric structure in neural correlations. Proc. Natl. Acad. Sci. USA 2015, 112, 13455–13460. [Google Scholar] [CrossRef]
- Giusti, C.; Ghrist, R.; Bassett, D.S. Two’s company, three (or more) is a simplex. J. Comput. Neurosci. 2016, 41, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Yang, H.; Nakahara, H.; Santos, G.S.; Nikolić, D.; Plenz, D. Higher-order interactions characterized in cortical activity. J. Neurosci. 2011, 31, 17514–17526. [Google Scholar] [CrossRef]
- Schneidman, E.; Berry, M.J.; Segev, R.; Bialek, W. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 2006, 440, 1007–1012. [Google Scholar] [CrossRef]
- Santoro, A.; Battiston, F.; Petri, G.; Amico, E. Higher-order organization of multivariate time series. Nat. Phys. 2023, 19, 221–229. [Google Scholar] [CrossRef]
- Bassett, D.S.; Gazzaniga, M.S. Understanding complexity in the human brain. Trends Cognit. Sci. 2011, 15, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Meunier, D.; Lambiotte, R.; Fornito, A.; Ersche, K.; Bullmore, E.T. Hierarchical modularity in human brain functional networks. Front. Neuroinform. 2009, 3, 37. [Google Scholar] [CrossRef]
- Bullmore, E.; Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009, 10, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Sporns, O.; Betzel, R.F. Modular brain networks. Annu. Rev. Psychol. 2016, 67, 613–640. [Google Scholar] [CrossRef]
- Abbe, E. Community detection and stochastic block models: Recent developments. J. Mach. Learn. Res. 2017, 18, 6446–6531. [Google Scholar]
- Fortunato, S. Community detection in graphs. Phys. Rep. 2010, 486, 75–174. [Google Scholar] [CrossRef]
- Fortunato, S.; Hric, D. Community detection in networks: A user guide. Phys. Rep. 2016, 659, 1–44. [Google Scholar] [CrossRef]
- Duong-Tran, D.; Kausar, A.; Amico, E.; Corominas-Murtra, B.; Dzemidzic, M.; Kareken, D.; Ventresca, M.; Goñi, J. A morphospace of functional configuration to assess configural breadth based on brain functional networks. Netw. Neurosci. 2021, 5, 666–688. [Google Scholar] [CrossRef] [PubMed]
- Bassett, D.S.; Wymbs, N.F.; Porter, M.A.; Mucha, P.J.; Carlson, J.M.; Grafton, S.T. Dynamic reconfiguration of human brain networks during learning. Proc. Natl. Acad. Sci. USA 2011, 108, 7641–7646. [Google Scholar] [CrossRef] [PubMed]
- Amico, E.; Arenas, A.; Goñi, J. Centralized and distributed cognitive task processing in the human connectome. Netw. Neurosci. 2019, 3, 455–474. [Google Scholar] [CrossRef]
- Yeo, B.T.; Krienen, F.M.; Sepulcre, J.; Sabuncu, M.R.; Lashkari, D.; Hollinshead, M.; Roffman, J.L.; Smoller, J.W.; Zöllei, L.; Polimeni, J.R.; et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 2011, 106, 1125–1165. [Google Scholar]
- Bryce, N.; Flournoy, J.; Moreira, J.F.G.; Rosen, M.L.; Sambook, K.A.; Mair, P.; McLaughlin, K.A. Brain parcellation selection: An overlooked decision point with meaningful effects on individual differences in resting-state functional connectivity. NeuroImage 2021, 243, 118487. [Google Scholar] [CrossRef]
- Lopez, K.C.; Kandala, S.; Marek, S.; Barch, D.M. Development of network topology and functional connectivity of the prefrontal cortex. Cereb. Cortex 2020, 30, 2489–2505. [Google Scholar] [CrossRef]
- Murphy, A.C.; Bertolero, M.A.; Papadopoulos, L.; Lydon-Staley, D.M.; Bassett, D.S. Multimodal network dynamics underpinning working memory. Nat. Commun. 2020, 11, 1–13. [Google Scholar] [CrossRef]
- Jalbrzikowski, M.; Liu, F.; Foran, W.; Calabro, F.J.; Roeder, K.; Devlin, B.; Luna, B. Cognitive and default mode networks support developmental stability in functional connectome fingerprinting through adolescence. bioRxiv 2019. [Google Scholar] [CrossRef]
- Satterthwaite, T.D.; Elliott, M.A.; Gerraty, R.T.; Ruparel, K.; Loughead, J.; Calkins, M.E.; Eickhoff, S.B.; Hakonarson, H.; Gur, R.C.; Gur, R.E.; et al. An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 2013, 64, 240–256. [Google Scholar] [CrossRef]
- Fan, J.; Tso, I.F.; Maixner, D.F.; Abagis, T.; Hernandez-Garcia, L.; Taylor, S.F. Segregation of salience network predicts treatment response of depression to repetitive transcranial magnetic stimulation. NeuroImage Clin. 2019, 22, 101719. [Google Scholar] [CrossRef] [PubMed]
- Lydon-Staley, D.; Kuehner, C.; Zamoscik, V.; Huffziger, S.; Kirsch, P.; Bassett, D. Repetitive negative thinking in daily life and functional connectivity among default mode, fronto-parietal, and salience networks. Transl. Psychiatry 2019, 9, 1–12. [Google Scholar] [CrossRef]
- Xu, F.; Garai, S.; Duong-Tran, D.; Saykin, A.J.; Zhao, Y.; Shen, L. Consistency of Graph Theoretical Measurements of Alzheimer’s Disease Fiber Density Connectomes Across Multiple Parcellation Scales. In Proceedings of the 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Las Vegas, NV, USA, 6–8 December 2022; pp. 1323–1328. [Google Scholar]
- Power, J.D.; Cohen, A.L.; Nelson, S.M.; Wig, G.S.; Barnes, K.A.; Church, J.A.; Vogel, A.C.; Laumann, T.O.; Miezin, F.M.; Schlaggar, B.L.; et al. Functional network organization of the human brain. Neuron 2011, 72, 665–678. [Google Scholar] [CrossRef] [PubMed]
- Glasser, M.F.; Coalson, T.S.; Robinson, E.C.; Hacker, C.D.; Harwell, J.; Yacoub, E.; Ugurbil, K.; Andersson, J.; Beckmann, C.F.; Jenkinson, M.; et al. A multi-modal parcellation of human cerebral cortex. Nature 2016, 536, 171–178. [Google Scholar] [CrossRef]
- Gordon, E.M.; Laumann, T.O.; Adeyemo, B.; Huckins, J.F.; Kelley, W.M.; Petersen, S.E. Generation and evaluation of a cortical area parcellation from resting-state correlations. Cereb. Cortex 2016, 26, 288–303. [Google Scholar] [CrossRef]
- Schaefer, A.; Kong, R.; Gordon, E.M.; Laumann, T.O.; Zuo, X.N.; Holmes, A.J.; Eickhoff, S.B.; Yeo, B.T. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 2018, 28, 3095–3114. [Google Scholar] [CrossRef]
- Schneider, C.M.; Moreira, A.A.; Andrade, J.S.; Havlin, S.; Herrmann, H.J. Mitigation of malicious attacks on networks. Proc. Natl. Acad. Sci. USA 2011, 108, 3838–3841. [Google Scholar] [CrossRef] [PubMed]
- Gardner, R.J.; Hermansen, E.; Pachitariu, M.; Burak, Y.; Baas, N.A.; Dunn, B.A.; Moser, M.B.; Moser, E.I. Toroidal topology of population activity in grid cells. Nature 2022, 602, 123–128. [Google Scholar] [CrossRef]
- Saleh, N.A.; Mahmoud, M.A.; Jones-Farmer, L.A.; Zwetsloot, I.; Woodall, W.H. Another look at the EWMA control chart with estimated parameters. J. Qual. Technol. 2015, 47, 363. [Google Scholar] [CrossRef]
- Salehi, M.; Greene, A.S.; Karbasi, A.; Shen, X.; Scheinost, D.; Constable, R.T. There is no single functional atlas even for a single individual: Parcellation of the human brain is state dependent. bioRxiv 2018. [Google Scholar] [CrossRef]
- Glasser, M.F.; Sotiropoulos, S.N.; Wilson, J.A.; Coalson, T.S.; Fischl, B.; Andersson, J.L.; Xu, J.; Jbabdi, S.; Webster, M.; Polimeni, J.R.; et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 2013, 80, 105–124. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, G. Topological pattern recognition for point cloud data. Acta Numer. 2014, 23, 289–368. [Google Scholar] [CrossRef]
- Shine, J.M.; Bissett, P.G.; Bell, P.T.; Koyejo, O.; Balsters, J.H.; Gorgolewski, K.J.; Moodie, C.A.; Poldrack, R.A. The dynamics of functional brain networks: Integrated network states during cognitive task performance. Neuron 2016, 92, 544–554. [Google Scholar] [CrossRef]
- Shine, J.M.; Poldrack, R.A. Principles of dynamic network reconfiguration across diverse brain states. NeuroImage 2017, 80, 396–405. [Google Scholar] [CrossRef]
- Shine, J.; Breakspear, M.; Bell, P.; Ehgoetz, K.M.; Shine, R.; Koyejo, O.; Sporns, O.; Poldrack, R. The dynamic basis of cognition: An integrative core under the control of the ascending neuromodulatory system. bioRxiv 2018. [Google Scholar] [CrossRef]
- Shine, J.M.; Breakspear, M.; Bell, P.; Martens, K.E.; Shine, R.; Koyejo, O.; Sporns, O.; Poldrack, R. Human cognition involves the dynamic integration of neural activity and neuromodulatory systems. Nat. Neurosci. 2019, 22, 89–96. [Google Scholar] [CrossRef]
- Duong-Tran, D. On Geometric and Algebraic Properties of Human Brain Functional Networks. Ph.D. Thesis, Purdue University Graduate School, West Lafayette, Indiana, 2022. [Google Scholar]
- Abbe, E.; Sandon, C. Proof of the achievability conjectures for the general stochastic block model. Commun. Pure Appl. Math. 2018, 71, 1334–1406. [Google Scholar] [CrossRef]
- Edelsbrunner, H.; Harer, J. Computational Topology: An Introduction; American Mathematical Society: Providence, RI, USA, 2010. [Google Scholar]
- Petri, G.; Expert, P.; Turkheimer, F.; Carhart-Harris, R.; Nutt, D.; Hellyer, P.J.; Vaccarino, F. Homological scaffolds of brain functional networks. J. R. Soc. Interface 2014, 11, 20140873. [Google Scholar] [CrossRef]
- Fornito, A.; Zalesky, A.; Breakspear, M. The connectomics of brain disorders. Nat. Rev. Neurosci. 2015, 16, 159. [Google Scholar] [CrossRef]
- Duong-Tran, D.; Amico, E.; Corominas-Murtra, B.; Abbas, K.; Dzemidzic, M.; Kareken, D.; Ventresca, M.; Goñi, J. A morphospace framework to assess configural breadth based on brain functional networks. arXiv 2019, arXiv:1901.10962. [Google Scholar]
- Betzel, R.F.; Medaglia, J.D.; Bassett, D.S. Diversity of meso-scale architecture in human and non-human connectomes. Nat. Commun. 2018, 9, 346. [Google Scholar] [CrossRef] [PubMed]
- Fornito, A.; Zalesky, A.; Bullmore, E. Fundamentals of Brain Network Analysis; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Van Essen, D.C.; Ugurbil, K.; Auerbach, E.; Barch, D.; Behrens, T.; Bucholz, R.; Chang, A.; Chen, L.; Corbetta, M.; Curtiss, S.W.; et al. The Human Connectome Project: A data acquisition perspective. Neuroimage 2012, 62, 2222–2231. [Google Scholar] [CrossRef] [PubMed]
- Van Essen, D.C.; Smith, S.M.; Barch, D.M.; Behrens, T.E.; Yacoub, E.; Ugurbil, K.; Consortium, W.M.H. The WU-Minn human connectome project: An overview. Neuroimage 2013, 80, 62–79. [Google Scholar] [CrossRef]
- Barch, D.M.; Burgess, G.C.; Harms, M.P.; Petersen, S.E.; Schlaggar, B.L.; Corbetta, M.; Glasser, M.F.; Curtiss, S.; Dixit, S.; Feldt, C.; et al. Function in the human connectome: Task-fMRI and individual differences in behavior. Neuroimage 2013, 80, 169–189. [Google Scholar] [CrossRef]
- Smith, S.M.; Beckmann, C.F.; Andersson, J.; Auerbach, E.J.; Bijsterbosch, J.; Douaud, G.; Duff, E.; Feinberg, D.A.; Griffanti, L.; Harms, M.P.; et al. Resting-state fMRI in the human connectome project. Neuroimage 2013, 80, 144–168. [Google Scholar] [CrossRef]
- Amico, E.; Goñi, J. The quest for identifiability in human functional connectomes. Sci. Rep. 2018, 8, 8254. [Google Scholar] [CrossRef]
- Amico, E.; Goñi, J. Mapping hybrid functional-structural connectivity traits in the human connectome. Netw. Neurosci. 2018, 2, 306–322. [Google Scholar] [CrossRef]
- Lashkari, D.; Vul, E.; Kanwisher, N.; Golland, P. Discovering structure in the space of fMRI selectivity profiles. Neuroimage 2010, 50, 1085–1098. [Google Scholar] [CrossRef] [PubMed]
- Di, X.; Gohel, S.; Kim, E.H.; Biswal, B.B. Task vs. rest—Different network configurations between the coactivation and the resting-state brain networks. Front. Hum. Neurosci. 2013, 7, 493. [Google Scholar] [CrossRef]
- Huang, J. Greater brain activity during the resting state and the control of activation during the performance of tasks. Sci. Rep. 2019, 9, 5027. [Google Scholar] [CrossRef]
- Raichle, M.E.; MacLeod, A.M.; Snyder, A.Z.; Powers, W.J.; Gusnard, D.A.; Shulman, G.L. A default mode of brain function. Proc. Natl. Acad. Sci. USA 2001, 98, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Buckner, R.L.; Andrews-Hanna, J.R.; Schacter, D.L. The brain’s default network: Anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 2008, 1124, 1–38. [Google Scholar] [CrossRef] [PubMed]
- Fransson, P. Spontaneous low-frequency BOLD signal fluctuations: An fMRI investigation of the resting-state default mode of brain function hypothesis. Hum. Brain Map. 2005, 26, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Pu, W.; Yao, S. Functional alterations of fronto-limbic circuit and default mode network systems in first-episode, drug-naïve patients with major depressive disorder: A meta-analysis of resting-state fMRI data. J. Affect. Disord. 2016, 206, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Catani, M.; Dell’Acqua, F.; De Schotten, M.T. A revised limbic system model for memory, emotion and behaviour. Neurosci. Biobehav. Rev. 2013, 37, 1724–1737. [Google Scholar] [CrossRef] [PubMed]
- Roxo, M.R.; Franceschini, P.R.; Zubaran, C.; Kleber, F.D.; Sander, J.W. The limbic system conception and its historical evolution. Sci. World J. 2011, 11, 2427–2440. [Google Scholar] [CrossRef] [PubMed]
- Hariri, A.R.; Bookheimer, S.Y.; Mazziotta, J.C. Modulating emotional responses: Effects of a neocortical network on the limbic system. Neuroreport 2000, 11, 43–48. [Google Scholar] [CrossRef]
- Kullback, S. Information Theory and Statistics; Courier Corporation: Mineola, NY, USA, 1997. [Google Scholar]
- Schultz, D.H.; Cole, M.W. Higher intelligence is associated with less task-related brain network reconfiguration. J. Neurosci. 2016, 36, 8551–8561. [Google Scholar] [CrossRef]
- Amico, E.; Abbas, K.; Duong-Tran, D.A.; Tipnis, U.; Rajapandian, M.; Chumin, E.; Ventresca, M.; Harezlak, J.; Goñi, J. Toward an information theoretical description of communication in brain networks. Netw. Neurosci. 2021, 5, 646–665. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.W.; Bassett, D.S.; Power, J.D.; Braver, T.S.; Petersen, S.E. Intrinsic and task-evoked network architectures of the human brain. Neuron 2014, 83, 238–251. [Google Scholar] [CrossRef]
- Mohr, H.; Wolfensteller, U.; Betzel, R.F.; Mišić, B.; Sporns, O.; Richiardi, J.; Ruge, H. Integration and segregation of large-scale brain networks during short-term task automatization. Nat. Commun. 2016, 7, 13217. [Google Scholar] [CrossRef]
- Abbas, K.; Liu, M.; Venkatesh, M.; Amico, E.; Kaplan, A.D.; Ventresca, M.; Pessoa, L.; Harezlak, J.; Goñi, J. Geodesic distance on optimally regularized functional connectomes uncovers individual fingerprints. Brain Connect. 2021, 11, 333–348. [Google Scholar] [CrossRef]
- Fox, M.D.; Snyder, A.Z.; Vincent, J.L.; Corbetta, M.; Van Essen, D.C.; Raichle, M.E. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA 2005, 102, 9673–9678. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Havlin, S.; Makse, H.A. Self-similarity of complex networks. Nature 2005, 433, 392–395. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Havlin, S.; Makse, H.A. Origins of fractality in the growth of complex networks. Nat. Phys. 2006, 2, 275–281. [Google Scholar] [CrossRef]
- Singh, S.S.; Khundrakpam, B.; Reid, A.T.; Lewis, J.D.; Evans, A.C.; Ishrat, R.; Sharma, B.I.; Singh, R.B. Scaling in topological properties of brain networks. Sci. Rep. 2016, 6, 24926. [Google Scholar] [CrossRef] [PubMed]
- Greicius, M.D.; Krasnow, B.; Reiss, A.L.; Menon, V. Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. USA 2003, 100, 253–258. [Google Scholar] [CrossRef]
- Betzel, R.F.; Satterthwaite, T.D.; Gold, J.I.; Bassett, D.S. Positive affect, surprise, and fatigue are correlates of network flexibility. Sci. Rep. 2017, 7, 520. [Google Scholar] [CrossRef]
- Bertolero, M.A.; Yeo, B.T.; D’Esposito, M. The modular and integrative functional architecture of the human brain. Proc. Natl. Acad. Sci. USA 2015, 112, E6798–E6807. [Google Scholar] [CrossRef]
- Tian, Y.; Margulies, D.S.; Breakspear, M.; Zalesky, A. Hierarchical organization of the human subcortex unveiled with functional connectivity gradients. bioRxiv 2018. [Google Scholar] [CrossRef]
- Revell, A.Y.; Silva, A.B.; Arnold, T.C.; Stein, J.M.; Das, S.R.; Shinohara, R.T.; Bassett, D.S.; Litt, B.; Davis, K.A. A framework For brain atlases: Lessons from seizure dynamics. Neuroimage 2022, 254, 118986. [Google Scholar] [CrossRef] [PubMed]
- Barnes, A.; Bullmore, E.T.; Suckling, J. Endogenous human brain dynamics recover slowly following cognitive effort. PLoS ONE 2009, 4, e6626. [Google Scholar] [CrossRef] [PubMed]
- Douw, L.; Wakeman, D.G.; Tanaka, N.; Liu, H.; Stufflebeam, S.M. State-dependent variability of dynamic functional connectivity between frontoparietal and default networks relates to cognitive flexibility. Neuroscience 2016, 339, 12–21. [Google Scholar] [CrossRef] [PubMed]
fMRI Conditions | Run Time (min:s) | # of Time Points |
---|---|---|
REST1 (and REST2) | 14:33 | 1200 |
EMOTION (EMOT) | 2:16 | 176 |
GAMBLING (GAM) | 3:12 | 253 |
MOTOR (MOT) | 3:34 | 284 |
LANGUAGE (LANG) | 3:57 | 316 |
RELATIONAL (REL) | 2:56 | 232 |
SOCIAL (SOC) | 3:27 | 274 |
WORKING MEMORY (WM) | 5:01 | 405 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duong-Tran, D.; Kaufmann, R.; Chen, J.; Wang, X.; Garai, S.; Xu, F.H.; Bao, J.; Amico, E.; Kaplan, A.D.; Petri, G.; et al. Homological Landscape of Human Brain Functional Sub-Circuits. Mathematics 2024, 12, 455. https://doi.org/10.3390/math12030455
Duong-Tran D, Kaufmann R, Chen J, Wang X, Garai S, Xu FH, Bao J, Amico E, Kaplan AD, Petri G, et al. Homological Landscape of Human Brain Functional Sub-Circuits. Mathematics. 2024; 12(3):455. https://doi.org/10.3390/math12030455
Chicago/Turabian StyleDuong-Tran, Duy, Ralph Kaufmann, Jiong Chen, Xuan Wang, Sumita Garai, Frederick H. Xu, Jingxuan Bao, Enrico Amico, Alan D. Kaplan, Giovanni Petri, and et al. 2024. "Homological Landscape of Human Brain Functional Sub-Circuits" Mathematics 12, no. 3: 455. https://doi.org/10.3390/math12030455
APA StyleDuong-Tran, D., Kaufmann, R., Chen, J., Wang, X., Garai, S., Xu, F. H., Bao, J., Amico, E., Kaplan, A. D., Petri, G., Goni, J., Zhao, Y., & Shen, L. (2024). Homological Landscape of Human Brain Functional Sub-Circuits. Mathematics, 12(3), 455. https://doi.org/10.3390/math12030455