Several Goethals–Seidel Sequences with Special Structures
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
3.1. GS Sequences Based on a k-Partition
3.2. GS Sequences Based on a Nine Block
4. GS Structures of Two Groups of Polynomials
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Colbourn, C.J.; Dinitz, J.H. (Eds.) Handbook of Combinatorial Designs, 2nd ed.; Discrete Mathematics and Its Applications, Chapman & Hall/CRC: Boca Raton, FL, USA, 2007; pp. xxii+984. [Google Scholar]
- Horadam, K.J. Hadamard Matrices and Their Applications; Princeton University Press: Princeton, NJ, USA, 2007; pp. xiv+263. [Google Scholar]
- Seberry, J. Orthogonal Designs; Hadamard Matrices, Quadratic Forms and Algebras, Revised and Updated Edition of the 1979 Original [MR0534614]; Springer: Cham, Germany, 2017. [Google Scholar]
- Seberry, J.; Yamada, M. Hadamard Matrices Constructions Using Number Theory and Algebra; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020; pp. xxx+321. [Google Scholar]
- Craigen, R. Constructing Hadamard matrices with orthogonal pairs. Ars Combin. 1992, 33, 57–64. [Google Scholar]
- Baumert, L.D.; Hall, M., Jr. A new construction for Hadamard matrices. Bull. Am. Math. Soc. 1965, 71, 169–170. [Google Scholar] [CrossRef]
- Turyn, R.J. A special class of Williamson matrices and difference sets. J. Combin. Theory Ser. A 1984, 36, 111–115. [Google Scholar] [CrossRef]
- Farouk, A.; Wang, Q. Construction of new Hadamard matrices using known Hadamard matrices. Filomat 2022, 36, 2025–2042. [Google Scholar] [CrossRef]
- Fitzpatrick, P.; O’Keeffe, H. Williamson type Hadamard matrices with circulant components. Discret. Math. 2023, 346, 113615. [Google Scholar] [CrossRef]
- Harada, M.; Ishizuka, K. Hadamard matrices of order 36 formed by codewords in some ternary self-dual codes. Discret. Math. 2024, 347, 113661. [Google Scholar] [CrossRef]
- Kratochvíl, J.; Nešetřil, J.; Rosenfeld, M. Graph designs, Hadamard matrices and geometric configurations. In Graph Theory and Combinatorial Biology (BAlatonlelle, 1996); Bolyai Society Mathematical Studies; János Bolyai Mathematical Society: Budapest, Hungary, 1999; Volume 7, pp. 101–123. [Google Scholar]
- Seberry, J. A résumé of some recent results on Hadamard matrices, (v, k, λ)-graphs and block designs. In Combinatorial Structures and Their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969); Gordon and Breach: New York, NY, USA; London, UK; Paris, France, 1970; pp. 463–466. [Google Scholar]
- Xia, T.; Zuo, G.; Lou, L.; Xia, M. Hadamard matrices of composite orders. Trans. Comb. 2024, 13, 31–40. [Google Scholar]
- Seberry, J.; Yamada, M. Hadamard matrices, sequences, and block designs. In Contemporary Design Theory; John Wiley and Sons: Hoboken, NJ, USA, 1992; pp. 431–560. [Google Scholar]
- Goethals, J.M.; Seidel, J.J. A skew-Hadamard matrix of order 36. J. Aust. Math. Soc. 1970, 11, 343–344. [Google Scholar] [CrossRef]
- Whiteman, A. Skew Hadamard matrices of Goethals—Seidel type. Discret. Math. 1972, 2, 397–405. [Google Scholar] [CrossRef]
- Whiteman, A. An infinite family of Hadamard matrices of Williamson type. J. Comb. Theory A 1973, 14, 334–340. [Google Scholar] [CrossRef]
- Doković, D.V. Construction of some new Hadamard matrices. Bull. Aust. Math. Soc. 1992, 45, 327–332. [Google Scholar] [CrossRef]
- Doković, D.V. Ten new orders for Hadamard matrices of skew type. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 1992, 3, 47–59. [Google Scholar]
- Doković, D.V. Two Hadamard matrices of order 956 of Goethals-Seidel type. Combinatorica 1994, 14, 375–377. [Google Scholar] [CrossRef]
- Doković, D.V.; Kotsireas, I. Goethals-Seidel difference families with symmetric or skew base blocks. Math. Comput. Sci. 2018, 12, 373–388. [Google Scholar] [CrossRef]
- Yang, C.H. Hadamard matrices, finite sequences, and polynomials defined on the unit circle. Math. Comp. 1979, 33, 688–693. [Google Scholar] [CrossRef]
- Yang, C.H. Hadamard matrices and δ-codes of length 3n. Proc. Am. Math. Soc. 1982, 85, 480–482. [Google Scholar] [CrossRef]
- Yang, C.H. A composition theorem for δ-codes. Proc. Am. Math. Soc. 1983, 89, 375–378. [Google Scholar] [CrossRef]
- Yang, C.H. Lagrange identity for polynomials and δ-codes of lengths 7t and 13t. Proc. Am. Math. Soc. 1983, 88, 746–750. [Google Scholar] [CrossRef]
- Yang, C.H. On composition of four-symbol δ-codes and Hadamard matrices. Proc. Am. Math. Soc. 1989, 107, 763–776. [Google Scholar]
- Cooper, J.; Wallis, J. A construction for Hadamard arrays. Bull. Aust. Math. Soc. 1972, 7, 269–277. [Google Scholar] [CrossRef]
- Shen, S.; Zhang, X. Constructions of Goethals–Seidel Sequences by Using k-Partition. Mathematics 2023, 11, 294. [Google Scholar] [CrossRef]
- Doković, D.V.; Kotsireas, I. Compression of periodic complementary sequences and applications. Des. Codes Cryptogr. 2015, 74, 365–377. [Google Scholar] [CrossRef]
- Fletcher, R.; Gysin, M.; Seberry, J. Application of the discrete Fourier transform to the search for generalised Legendre pairs and Hadamard matrices. Australas. J. Combin. 2001, 23, 75–86. [Google Scholar]
- Williamson, J. Hadamard’s determinant theorem and the sum of four squares. Duke Math. J. 1944, 11, 65–81. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, S.; Zhang, X. Several Goethals–Seidel Sequences with Special Structures. Mathematics 2024, 12, 530. https://doi.org/10.3390/math12040530
Shen S, Zhang X. Several Goethals–Seidel Sequences with Special Structures. Mathematics. 2024; 12(4):530. https://doi.org/10.3390/math12040530
Chicago/Turabian StyleShen, Shuhui, and Xiaojun Zhang. 2024. "Several Goethals–Seidel Sequences with Special Structures" Mathematics 12, no. 4: 530. https://doi.org/10.3390/math12040530
APA StyleShen, S., & Zhang, X. (2024). Several Goethals–Seidel Sequences with Special Structures. Mathematics, 12(4), 530. https://doi.org/10.3390/math12040530