A Hybrid Initialization and Effective Reproduction-Based Evolutionary Algorithm for Tackling Bi-Objective Large-Scale Feature Selection in Classification
Abstract
:1. Introduction
- First of all, a hybrid initialization method, abbreviated as HI, is proposed in order to boost the search ability of MOEAs in addressing high-dimensional bi-objective feature selection, by composing a promising hybrid initial population which vastly explores the objective space and adaptively exploits its forward areas.
- As a supplement, an effective reproduction method, abbreviated as ER, is also proposed to balance the diversity and convergence factors, and to further increase the offspring quality for better variations, via adopting an effective crossover operation and a dynamic mutation scale.
- Comprehensive experiments are conducted in this work regarding the general performance and component contributions versus different state-of-the-art MOEAs, in terms of multiple metrics, tested on a series of 20 datasets. The empirical results and analyses confirm the search advantages of HIER as well as its high efficiency.
2. Related Works
2.1. Bi-Objective Optimization Problem
2.2. Evolutionary Feature Selection
3. Proposed Algorithm
3.1. General Framework
Algorithm 1 |
|
3.2. Hybrid Initialization
Algorithm 2 |
|
Algorithm 3 |
|
3.3. Effective Reproduction
Algorithm 4 |
|
3.4. More Discussions
4. Experiment Setups
4.1. Datasets for Test Problems
4.2. Algorithms for Comparison Analyses
4.3. Metrics for Performance Results
4.4. Settings for Computational Environments
5. Experiment Studies
5.1. General Performance Studies
5.2. Nondominated Solution Distributions
5.3. Component Contribution Analyses
5.4. Computational Time Complexity
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eiben, A.E.; Smith, J.E. What is an evolutionary algorithm? In Introduction to Evolutionary Computing; Springer: Berlin/Heidelberg, Germany, 2015; pp. 25–48. [Google Scholar]
- Coello, C.A.C.; Lamont, G.B.; Van Veldhuizen, D.A. Evolutionary Algorithms for Solving Multi-Objective Problems; Springer: New York, NY, USA, 2007; Volume 5. [Google Scholar]
- Zhou, A.; Qu, B.Y.; Li, H.; Zhao, S.Z.; Suganthan, P.N.; Zhang, Q. Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm Evol. Comput. 2011, 1, 32–49. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Srinivas, N.; Deb, K. Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 1994, 2, 221–248. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Deb, K.; Jain, H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [Google Scholar] [CrossRef]
- Jain, H.; Deb, K. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach. IEEE Trans. Evol. Comput. 2014, 18, 602–622. [Google Scholar] [CrossRef]
- Yuan, Y.; Xu, H.; Wang, B.; Yao, X. A New Dominance Relation-Based Evolutionary Algorithm for Many-Objective Optimization. IEEE Trans. Evol. Comput. 2016, 20, 16–37. [Google Scholar] [CrossRef]
- Tian, Y.; Cheng, R.; Zhang, X.; Su, Y.; Jin, Y. A Strengthened Dominance Relation Considering Convergence and Diversity for Evolutionary Many-Objective Optimization. IEEE Trans. Evol. Comput. 2019, 23, 331–345. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, H. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans. Evol. Comput. 2007, 11, 712–731. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q. Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 2009, 13, 284–302. [Google Scholar] [CrossRef]
- Li, K.; Zhang, Q.; Kwong, S.; Li, M.; Wang, R. Stable Matching-Based Selection in Evolutionary Multiobjective Optimization. IEEE Trans. Evol. Comput. 2014, 18, 909–923. [Google Scholar] [CrossRef]
- Xu, H.; Zeng, W.; Zhang, D.; Zeng, X. MOEA/HD: A Multiobjective Evolutionary Algorithm Based on Hierarchical Decomposition. IEEE Trans. Cybern. 2019, 49, 517–526. [Google Scholar] [CrossRef]
- Bader, J.; Zitzler, E. HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization. Evol. Comput. 2011, 19, 45–76. [Google Scholar] [CrossRef]
- Xu, H.; Zeng, W.; Zeng, X.; Yen, G.G. An Evolutionary Algorithm Based on Minkowski Distance for Many-Objective Optimization. IEEE Trans. Cybern. 2019, 49, 3968–3979. [Google Scholar] [CrossRef]
- Xu, H.; Zeng, W.; Zeng, X.; Yen, G.G. A Polar-Metric-Based Evolutionary Algorithm. IEEE Trans. Cybern. 2021, 51, 3429–3440. [Google Scholar] [CrossRef]
- Liang, Z.; Luo, T.; Hu, K.; Ma, X.; Zhu, Z. An Indicator-Based Many-Objective Evolutionary Algorithm With Boundary Protection. IEEE Trans. Cybern. 2021, 51, 4553–4566. [Google Scholar] [CrossRef]
- Wang, H.; Jin, Y.; Sun, C.; Doherty, J. Offline data-driven evolutionary optimization using selective surrogate ensembles. IEEE Trans. Evol. Comput. 2018, 23, 203–216. [Google Scholar] [CrossRef]
- Lin, Q.; Wu, X.; Ma, L.; Li, J.; Gong, M.; Coello, C.A.C. An Ensemble Surrogate-Based Framework for Expensive Multiobjective Evolutionary Optimization. IEEE Trans. Evol. Comput. 2022, 26, 631–645. [Google Scholar] [CrossRef]
- Sonoda, T.; Nakata, M. Multiple Classifiers-Assisted Evolutionary Algorithm Based on Decomposition for High-Dimensional Multiobjective Problems. IEEE Trans. Evol. Comput. 2022, 26, 1581–1595. [Google Scholar] [CrossRef]
- Goh, C.K.; Tan, K.C. A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization. IEEE Trans. Evol. Comput. 2008, 13, 103–127. [Google Scholar]
- Zhan, Z.H.; Li, J.; Cao, J.; Zhang, J.; Chung, H.S.H.; Shi, Y.H. Multiple Populations for Multiple Objectives: A Coevolutionary Technique for Solving Multiobjective Optimization Problems. IEEE Trans. Cybern. 2013, 43, 445–463. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Li, X.; Zhang, Q.; Tang, K.; Liang, Z.; Xie, W.; Zhu, Z. A survey on cooperative co-evolutionary algorithms. IEEE Trans. Evol. Comput. 2018, 23, 421–441. [Google Scholar] [CrossRef]
- Da, B.; Gupta, A.; Ong, Y.S.; Feng, L. Evolutionary multitasking across single and multi-objective formulations for improved problem solving. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 1695–1701. [Google Scholar]
- Gupta, A.; Ong, Y.S.; Feng, L.; Tan, K.C. Multiobjective Multifactorial Optimization in Evolutionary Multitasking. IEEE Trans. Cybern. 2017, 47, 1652–1665. [Google Scholar] [CrossRef]
- Rauniyar, A.; Nath, R.; Muhuri, P.K. Multi-factorial evolutionary algorithm based novel solution approach for multi-objective pollution-routing problem. Comput. Ind. Eng. 2019, 130, 757–771. [Google Scholar] [CrossRef]
- Cai, H.; Lin, Q.; Liu, H.; Li, X.; Xiao, H. A Multi-Objective Optimisation Mathematical Model with Constraints Conducive to the Healthy Rhythm for Lighting Control Strategy. Mathematics 2022, 10, 3471. [Google Scholar] [CrossRef]
- Alshammari, N.F.; Samy, M.M.; Barakat, S. Comprehensive Analysis of Multi-Objective Optimization Algorithms for Sustainable Hybrid Electric Vehicle Charging Systems. Mathematics 2023, 11, 1741. [Google Scholar] [CrossRef]
- Zhu, W.; Li, H.; Wei, W. A Two-Stage Multi-Objective Evolutionary Algorithm for Community Detection in Complex Networks. Mathematics 2023, 11, 2702. [Google Scholar] [CrossRef]
- Chalabi, N.E.; Attia, A.; Alnowibet, K.A.; Zawbaa, H.M.; Masri, H.; Mohamed, A.W. A Multi-Objective Gaining-Sharing Knowledge-Based Optimization Algorithm for Solving Engineering Problems. Mathematics 2023, 11, 3092. [Google Scholar] [CrossRef]
- Cao, F.; Tang, Z.; Zhu, C.; Zhao, X. An Efficient Hybrid Multi-Objective Optimization Method Coupling Global Evolutionary and Local Gradient Searches for Solving Aerodynamic Optimization Problems. Mathematics 2023, 11, 3844. [Google Scholar] [CrossRef]
- Gao, C.; Yin, Z.; Wang, Z.; Li, X.; Li, X. Multilayer Network Community Detection: A Novel Multi-Objective Evolutionary Algorithm Based on Consensus Prior Information [Feature]. IEEE Comput. Intell. Mag. 2023, 18, 46–59. [Google Scholar] [CrossRef]
- Xue, Y.; Chen, C.; Słowik, A. Neural Architecture Search Based on a Multi-Objective Evolutionary Algorithm with Probability Stack. IEEE Trans. Evol. Comput. 2023, 27, 778–786. [Google Scholar] [CrossRef]
- Long, S.; Zhang, Y.; Deng, Q.; Pei, T.; Ouyang, J.; Xia, Z. An Efficient Task Offloading Approach Based on Multi-Objective Evolutionary Algorithm in Cloud-Edge Collaborative Environment. IEEE Trans. Netw. Sci. Eng. 2023, 10, 645–657. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, S.; Jiang, X. Research on Multi-Objective Multi-Robot Task Allocation by Lin-Kernighan-Helsgaun Guided Evolutionary Algorithms. Mathematics 2022, 10, 4714. [Google Scholar] [CrossRef]
- Nguyen, B.H.; Xue, B.; Andreae, P.; Ishibuchi, H.; Zhang, M. Multiple Reference Points-Based Decomposition for Multiobjective Feature Selection in Classification: Static and Dynamic Mechanisms. IEEE Trans. Evol. Comput. 2020, 24, 170–184. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, D.; Jiang, L.; Ma, H. A particle swarm optimization based multiobjective memetic algorithm for high-dimensional feature selection. Memetic Comput. 2022, 14, 77–93. [Google Scholar] [CrossRef]
- Gong, Y.; Zhou, J.; Wu, Q.; Zhou, M.; Wen, J. A Length-Adaptive Non-Dominated Sorting Genetic Algorithm for Bi-Objective High-Dimensional Feature Selection. IEEE/CAA J. Autom. Sin. 2023, 10, 1834–1844. [Google Scholar] [CrossRef]
- Dash, M.; Liu, H. Feature selection for classification. Intell. Data Anal. 1997, 1, 131–156. [Google Scholar] [CrossRef]
- Jiao, R.; Nguyen, B.H.; Xue, B.; Zhang, M. A Survey on Evolutionary Multiobjective Feature Selection in Classification: Approaches, Applications, and Challenges. IEEE Trans. Evol. Comput. 2023, 1, Early Access. [Google Scholar] [CrossRef]
- Chen, K.; Xue, B.; Zhang, M.; Zhou, F. An Evolutionary Multitasking-Based Feature Selection Method for High-Dimensional Classification. IEEE Trans. Cybern. 2022, 52, 7172–7186. [Google Scholar] [CrossRef]
- Bai, H.; Cheng, R.; Yazdani, D.; Tan, K.C.; Jin, Y. Evolutionary Large-Scale Dynamic Optimization Using Bilevel Variable Grouping. IEEE Trans. Cybern. 2022, 1–14. [Google Scholar] [CrossRef]
- He, C.; Cheng, R.; Tian, Y.; Zhang, X.; Tan, K.C.; Jin, Y. Paired Offspring Generation for Constrained Large-Scale Multiobjective Optimization. IEEE Trans. Evol. Comput. 2021, 25, 448–462. [Google Scholar] [CrossRef]
- Xue, B.; Zhang, M.; Browne, W.N. Novel initialisation and updating mechanisms in PSO for feature selection in classification. In Proceedings of the Applications of Evolutionary Computation: 16th European Conference, EvoApplications 2013, Vienna, Austria, 3–5 April 2013; Proceedings 16. Springer: Berlin/Heidelberg, Germany, 2013; pp. 428–438. [Google Scholar]
- Xu, H.; Xue, B.; Zhang, M. Segmented Initialization and Offspring Modification in Evolutionary Algorithms for Bi-Objective Feature Selection. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference, New York, NY, USA, 8–12 July 2020; GECCO ’20. pp. 444–452. [Google Scholar]
- Xu, H.; Xue, B.; Zhang, M. A Duplication Analysis-Based Evolutionary Algorithm for Biobjective Feature Selection. IEEE Trans. Evol. Comput. 2021, 25, 205–218. [Google Scholar] [CrossRef]
- Ma, X.; Liu, F.; Qi, Y.; Wang, X.; Li, L.; Jiao, L.; Yin, M.; Gong, M. A Multiobjective Evolutionary Algorithm Based on Decision Variable Analyses for Multiobjective Optimization Problems With Large-Scale Variables. IEEE Trans. Evol. Comput. 2016, 20, 275–298. [Google Scholar] [CrossRef]
- Zhang, X.; Tian, Y.; Cheng, R.; Jin, Y. A Decision Variable Clustering-Based Evolutionary Algorithm for Large-Scale Many-Objective Optimization. IEEE Trans. Evol. Comput. 2018, 22, 97–112. [Google Scholar] [CrossRef]
- Zille, H.; Mostaghim, S. Comparison study of large-scale optimisation techniques on the LSMOP benchmark functions. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 27 November–1 December 2017; pp. 1–8. [Google Scholar]
- Tian, Y.; Shao, S.; Xie, G.; Zhang, X. A multi-granularity clustering based evolutionary algorithm for large-scale sparse multi-objective optimization. Swarm Evol. Comput. 2024, 84, 101453. [Google Scholar] [CrossRef]
- Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R.P.; Tang, J.; Liu, H. Feature selection: A data perspective. ACM Comput. Surv. (CSUR) 2017, 50, 1–45. [Google Scholar] [CrossRef]
- De La Iglesia, B. Evolutionary computation for feature selection in classification problems. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2013, 3, 381–407. [Google Scholar] [CrossRef]
- Xue, B.; Zhang, M.; Browne, W.N.; Yao, X. A survey on evolutionary computation approaches to feature selection. IEEE Trans. Evol. Comput. 2015, 20, 606–626. [Google Scholar] [CrossRef]
- Dokeroglu, T.; Deniz, A.; Kiziloz, H.E. A comprehensive survey on recent metaheuristics for feature selection. Neurocomputing 2022, 494, 269–296. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Maulik, U. An SVM-wrapped multiobjective evolutionary feature selection approach for identifying cancer-microRNA markers. IEEE Trans. Nanobiosci. 2013, 12, 275–281. [Google Scholar] [CrossRef]
- Vignolo, L.D.; Milone, D.H.; Scharcanski, J. Feature selection for face recognition based on multi-objective evolutionary wrappers. Expert Syst. Appl. 2013, 40, 5077–5084. [Google Scholar] [CrossRef]
- Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar]
- Lazar, C.; Taminau, J.; Meganck, S.; Steenhoff, D.; Coletta, A.; Molter, C.; de Schaetzen, V.; Duque, R.; Bersini, H.; Nowe, A. A survey on filter techniques for feature selection in gene expression microarray analysis. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 2012, 9, 1106–1119. [Google Scholar] [CrossRef] [PubMed]
- Xue, B.; Cervante, L.; Shang, L.; Browne, W.N.; Zhang, M. Multi-objective evolutionary algorithms for filter based feature selection in classification. Int. J. Artif. Intell. Tools 2013, 22, 1350024. [Google Scholar] [CrossRef]
- Chen, K.; Xue, B.; Zhang, M.; Zhou, F. Evolutionary Multitasking for Feature Selection in High-Dimensional Classification via Particle Swarm Optimization. IEEE Trans. Evol. Comput. 2022, 26, 446–460. [Google Scholar] [CrossRef]
- Xue, B.; Zhang, M.; Browne, W.N. Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms. Appl. Soft Comput. 2014, 18, 261–276. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, X.; Wang, C.; Jin, Y. An Evolutionary Algorithm for Large-Scale Sparse Multiobjective Optimization Problems. IEEE Trans. Evol. Comput. 2020, 24, 380–393. [Google Scholar] [CrossRef]
- Cheng, F.; Cui, J.; Wang, Q.; Zhang, L. A Variable Granularity Search-Based Multiobjective Feature Selection Algorithm for High-Dimensional Data Classification. IEEE Trans. Evol. Comput. 2023, 27, 266–280. [Google Scholar] [CrossRef]
- Espinosa, R.; Jimenez, F.; Palma, J. Surrogate-Assisted and Filter-Based Multiobjective Evolutionary Feature Selection for Deep Learning. IEEE Trans. Neural Netw. Learn. Syst. 2023, 1–15, Early Access. [Google Scholar] [CrossRef]
- Cheng, F.; Chu, F.; Xu, Y.; Zhang, L. A Steering-Matrix-Based Multiobjective Evolutionary Algorithm for High-Dimensional Feature Selection. IEEE Trans. Cybern. 2022, 52, 9695–9708. [Google Scholar] [CrossRef]
- Dua, D.; Graff, C. UCI Machine Learning Repository. 2017. Available online: https://archive.ics.uci.edu/ (accessed on 9 February 2024).
- While, L.; Hingston, P.; Barone, L.; Huband, S. A faster algorithm for calculating Hypervolume. IEEE Trans. Evol. Comput. 2006, 10, 29–38. [Google Scholar] [CrossRef]
- Tian, Y.; Cheng, R.; Zhang, X.; Jin, Y. PlatEMO: A MATLAB Platform for Evolutionary Multi-Objective Optimization. IEEE Comput. Intell. Mag. 2017, 12, 73–87. [Google Scholar] [CrossRef]
- Tran, B.; Xue, B.; Zhang, M.; Nguyen, S. Investigation on particle swarm optimisation for feature selection on high-dimensional data: Local search and selection bias. Connect. Sci. 2016, 28, 270–294. [Google Scholar] [CrossRef]
No. | Datasets | Features | Samples | Classes |
---|---|---|---|---|
1 | HillValley | 100 | 606 | 2 |
2 | MUSK1 | 166 | 476 | 2 |
3 | Arrhythmia | 278 | 452 | 13 |
4 | Yale | 1024 | 165 | 15 |
5 | Colon | 2000 | 62 | 2 |
6 | SRBCT | 2308 | 83 | 4 |
7 | AR10P | 2400 | 130 | 10 |
8 | PIE10P | 2420 | 210 | 10 |
9 | Leukemia1 | 5327 | 72 | 3 |
10 | Tumor9 | 5726 | 60 | 9 |
11 | TOX171 | 5748 | 171 | 4 |
12 | Brain1 | 5920 | 90 | 5 |
13 | Leukemia2 | 7070 | 72 | 2 |
14 | ALLAML | 7129 | 72 | 2 |
15 | Carcinom | 9182 | 174 | 11 |
16 | Nci9 | 9712 | 60 | 9 |
17 | Arcene | 10,000 | 200 | 2 |
18 | Orlraws10P | 10,304 | 100 | 10 |
19 | Brain2 | 10,367 | 50 | 4 |
20 | Prostate | 10,509 | 102 | 2 |
Metric | Data | HIER | NSGA-II | MOEA/D | HypE | MOEA/HD | SparseEA | DAEA |
---|---|---|---|---|---|---|---|---|
HV | Train | 1.1975 | 4.5800 | 3.4475 | 4.7475 | 5.5650 | 6.4850 | 1.9775 |
Test | 1.2138 | 4.5250 | 3.6162 | 5.0713 | 5.3213 | 6.0563 | 2.1963 | |
MCE | Train | 1.2125 | 4.2800 | 5.0888 | 3.9987 | 4.7988 | 5.8812 | 2.7400 |
Test | 1.8475 | 4.3800 | 4.6850 | 4.7263 | 4.6387 | 4.1350 | 3.5875 | |
NSF | Train | 1.3575 | 4.5287 | 2.8575 | 4.6937 | 5.4763 | 6.7300 | 2.3563 |
Test | 1.3700 | 4.4150 | 2.9987 | 4.9212 | 5.4825 | 6.5850 | 2.2275 |
Dataset | HIER | NSGA-II | MOEA/D | HypE | MOEA/HD | SparseEA | DAEA |
---|---|---|---|---|---|---|---|
HillValley | 6.2892e-01 | 5.8491e-01 | † 6.2589e-01 | 6.0937e-01 | † 6.2585e-01 | † 6.2597e-01 | † 6.2599e-01 |
±8.46e-03 | ±2.51e-02 | ±1.04e-02 | ± 1.81e-02 | ±8.54e-03 | ±8.77e-03 | ±8.50e-03 | |
MUSK1 | 8.8189e-01 | 8.2291e-01 | 8.6667e-01 | 8.2231e-01 | 8.4699e-01 | 8.9529e-01 | 9.0313e-01 |
±1.84e-02 | ±2.49e-02 | ±1.64e-02 | ±2.14e-02 | ±3.17e-02 | ±1.42e-02 | ±1.55e-02 | |
Arrhythmia | 6.9949e-01 | 6.3085e-01 | 6.6549e-01 | 6.1568e-01 | 4.8263e-01 | 5.3277e-01 | † 6.9537e-01 |
±1.49e-02 | ±2.66e-02 | ±1.58e-02 | ±3.67e-02 | ±1.69e-02 | ±5.28e-02 | ±1.60e-02 | |
Yale | 7.2988e-01 | 4.8777e-01 | 5.1271e-01 | 4.7391e-01 | 4.9196e-01 | 4.8107e-01 | 6.0505e-01 |
±3.46e-02 | ±1.34e-02 | ±2.62e-02 | ±2.55e-02 | ±3.39e-02 | ±1.64e-02 | ±2.48e-02 | |
Colon | 8.8458e-01 | 5.5002e-01 | 6.0785e-01 | 5.4386e-01 | 5.2395e-01 | 4.9869e-01 | 6.6802e-01 |
±5.47e-02 | ±2.65e-02 | ±4.78e-02 | ±2.77e-02 | ±3.30e-02 | ±2.01e-02 | ±3.95e-02 | |
SRBCT | 8.8158e-01 | 2.8407e-01 | 3.1776e-01 | 2.8506e-01 | 2.5538e-01 | 2.4792e-01 | 3.0281e-01 |
±7.70e-02 | ±2.05e-03 | ±2.03e-03 | ±2.29e-03 | ±1.81e-03 | ±1.69e-03 | ±1.96e-02 | |
AR10P | 7.9190e-01 | 3.6309e-01 | 3.7087e-01 | 3.4460e-01 | 3.4495e-01 | 3.2227e-01 | 4.3142e-01 |
±3.81e-02 | ±2.01e-02 | ±2.26e-02 | ±1.96e-02 | ±1.75e-02 | ±1.11e-02 | ±2.05e-02 | |
PIE10P | 9.5463e-01 | 6.0231e-01 | 6.4575e-01 | 5.8837e-01 | 5.8831e-01 | 5.4344e-01 | 6.9820e-01 |
±2.49e-02 | ±1.06e-02 | ±1.13e-02 | ±1.23e-02 | ±1.22e-02 | ±6.44e-03 | ±1.57e-02 | |
Leukemia1 | 9.4797e-01 | 5.2904e-01 | 5.4315e-01 | 5.1931e-01 | 5.1321e-01 | 4.8596e-01 | 6.0516e-01 |
±3.25e-02 | ±1.81e-02 | ±3.10e-02 | ±1.15e-02 | ±2.40e-02 | ±1.64e-02 | ±2.04e-02 | |
Tumor9 | 5.0677e-01 | 2.7901e-01 | 2.8321e-01 | 2.6172e-01 | 2.6731e-01 | 2.6728e-01 | 3.0436e-01 |
±5.87e-02 | ±2.80e-02 | ±2.54e-02 | ±3.52e-02 | ±2.35e-02 | ±1.96e-02 | ±2.38e-02 | |
TOX171 | 8.3099e-01 | 4.8294e-01 | 4.8764e-01 | 4.7065e-01 | 4.7759e-01 | 4.5753e-01 | 5.4227e-01 |
±3.79e-02 | ±8.58e-03 | ±1.97e-02 | ±1.61e-02 | ±1.65e-02 | ±1.19e-02 | ±1.92e-02 | |
Brain1 | 7.8591e-01 | 4.7180e-01 | 4.9062e-01 | 4.7043e-01 | 4.5347e-01 | 4.3124e-01 | 5.1273e-01 |
±3.82e-02 | ±3.11e-03 | ±1.09e-02 | ±3.61e-03 | ±1.00e-02 | ±1.78e-03 | ±8.53e-03 | |
Leukemia2 | 9.4408e-01 | 5.3600e-01 | 5.4496e-01 | 5.3301e-01 | 5.1258e-01 | 4.9718e-01 | 6.0216e-01 |
±5.57e-02 | ±8.95e-03 | ±1.94e-02 | ±1.69e-02 | ±1.79e-02 | ±9.84e-03 | ±1.67e-02 | |
ALLAML | 9.5646e-01 | 5.2052e-01 | 5.3575e-01 | 5.1175e-01 | 5.0598e-01 | 4.8530e-01 | 5.8265e-01 |
±4.54e-02 | ±1.52e-02 | ±1.34e-02 | ±1.64e-02 | ±1.44e-02 | ±1.52e-02 | ±1.83e-02 | |
Carcinom | 8.8720e-01 | 5.1803e-01 | 5.2327e-01 | 5.0847e-01 | 5.0915e-01 | 4.8714e-01 | 5.8095e-01 |
±2.73e-02 | ±1.09e-02 | ±1.55e-02 | ±1.18e-02 | ±1.10e-02 | ±8.18e-03 | ±1.18e-02 | |
Nci9 | 5.0449e-01 | 2.4060e-01 | 2.6158e-01 | 2.3947e-01 | 2.3696e-01 | 2.2538e-01 | 2.7073e-01 |
±7.48e-02 | ±2.54e-02 | ±2.94e-02 | ±2.57e-02 | ±2.21e-02 | ±2.00e-02 | ±2.75e-02 | |
Arcene | 8.6704e-01 | 3.6248e-01 | 3.7242e-01 | 3.6265e-01 | 3.4447e-01 | 3.3745e-01 | 3.8590e-01 |
±2.45e-02 | ±1.10e-03 | ±1.85e-03 | ±2.03e-03 | ±1.24e-03 | ±1.29e-03 | ±2.75e-03 | |
Orlraws10P | 9.6479e-01 | 5.3898e-01 | 5.4470e-01 | 5.3648e-01 | 5.2969e-01 | 5.0571e-01 | 5.9507e-01 |
±2.83e-02 | ±7.53e-03 | ±9.58e-03 | ±5.90e-03 | ±8.00e-03 | ±3.88e-03 | ±8.65e-03 | |
Brain2 | 7.2102e-01 | 3.9029e-01 | 3.8245e-01 | 3.7751e-01 | 3.7819e-01 | 3.6871e-01 | 4.3346e-01 |
±7.46e-02 | ±2.15e-02 | ±2.43e-02 | ±2.55e-02 | ±2.12e-02 | ±1.66e-02 | ±2.82e-02 | |
Prostate | 9.4399e-01 | 4.6288e-01 | 4.5987e-01 | 4.5114e-01 | 4.5588e-01 | 4.4194e-01 | 5.2044e-01 |
±4.03e-02 | ±1.29e-02 | ±1.51e-02 | ±1.06e-02 | ±1.16e-02 | ±8.71e-03 | ±1.53e-02 |
Dataset | HIER | NSGA-II | MOEA/D | HypE | MOEA/HD | SparseEA | DAEA |
---|---|---|---|---|---|---|---|
HillValley | 4.0055e-01 | 4.2225e-01 | † 4.0440e-01 | 4.1346e-01 | † 4.0220e-01 | † 4.0412e-01 | † 4.0412e-01 |
±9.75e-03 | ±1.67e-02 | ±1.17e-02 | ±1.44e-02 | ±8.84e-03 | ±1.00e-02 | ±9.68e-03 | |
MUSK1 | 8.5315e-02 | † 9.5105e-02 | 1.1538e-01 | 9.8601e-02 | † 9.7203e-02 | 1.0210e-01 | † 9.1608e-02 |
±1.74e-02 | ±2.18e-02 | ±2.04e-02 | ±1.80e-02 | ±2.33e-02 | ±1.64e-02 | ±1.84e-02 | |
Arrhythmia | 3.2554e-01 | 3.7914e-01 | 3.5072e-01 | 3.8921e-01 | 4.6367e-01 | 4.3885e-01 | † 3.3129e-01 |
±1.68e-02 | ±3.29e-02 | ±1.91e-02 | ±4.51e-02 | ±1.71e-02 | ±4.18e-02 | ±1.80e-02 | |
Yale | 2.9333e-01 | 3.4778e-01 | 3.6222e-01 | 3.5667e-01 | 3.4000e-01 | 3.1333e-01 | † 2.9889e-01 |
±3.86e-02 | ±2.53e-02 | ±3.82e-02 | ±3.85e-02 | ±5.20e-02 | ±2.78e-02 | ±3.01e-02 | |
Colon | 1.2632e-01 | 2.1316e-01 | 2.0789e-01 | 2.1053e-01 | 2.3421e-01 | 1.9737e-01 | 1.6842e-01 |
±6.01e-02 | ±4.35e-02 | ±6.50e-02 | ±4.52e-02 | ±5.26e-02 | ±3.77e-02 | ±5.01e-02 | |
SRBCT | 1.2800e-01 | 6.4000e-01 | 6.4000e-01 | 6.4000e-01 | 6.4000e-01 | 6.4000e-01 | 6.4000e-01 |
±8.47e-02 | ±1.14e-16 | ±1.14e-16 | ±1.14e-16 | ±1.14e-16 | ±1.14e-16 | ±1.14e-16 | |
AR10P | 2.2750e-01 | 4.9000e-01 | 5.2000e-01 | 5.1375e-01 | 5.1500e-01 | 5.0750e-01 | 4.7000e-01 |
±4.21e-02 | ±3.38e-02 | ±3.77e-02 | ±3.09e-02 | ±3.08e-02 | ±2.00e-02 | ±3.10e-02 | |
PIE10P | 4.8333e-02 | 9.6667e-02 | 1.0333e-01 | 1.0167e-01 | 1.0167e-01 | 1.0167e-01 | 8.5833e-02 |
±2.75e-02 | ±1.28e-02 | ±2.27e-02 | ±1.61e-02 | ±1.42e-02 | ±1.07e-02 | ±1.82e-02 | |
Leukemia1 | 5.6818e-02 | 1.6136e-01 | 1.8182e-01 | 1.6818e-01 | 1.7045e-01 | 1.5909e-01 | 1.4773e-01 |
±3.57e-02 | ±3.12e-02 | ±4.17e-02 | ±2.14e-02 | ±4.14e-02 | ±3.13e-02 | ±2.90e-02 | |
Tumor9 | 5.4167e-01 | 5.9722e-01 | 6.0556e-01 | 6.2222e-01 | 6.1111e-01 | 5.8056e-01 | 6.1111e-01 |
±6.47e-02 | ±5.06e-02 | ±4.38e-02 | ±6.40e-02 | ±4.42e-02 | ±3.81e-02 | ±4.03e-02 | |
TOX171 | 1.8396e-01 | 2.2358e-01 | 2.4057e-01 | 2.3302e-01 | 2.2736e-01 | 2.1321e-01 | 2.1792e-01 |
±4.19e-02 | ±1.53e-02 | ±3.56e-02 | ±3.02e-02 | ±2.84e-02 | ±2.38e-02 | ±2.84e-02 | |
Brain1 | 2.3519e-01 | 2.5926e-01 | 2.5926e-01 | 2.5926e-01 | 2.5926e-01 | 2.5926e-01 | 2.5926e-01 |
±4.21e-02 | ±0.00e+00 | ±0.00e+00 | ±0.00e+00 | ±0.00e+00 | ±0.00e+00 | ±0.00e+00 | |
Leukemia2 | 6.1364e-02 | 1.3182e-01 | 1.4545e-01 | 1.3182e-01 | 1.4545e-01 | 1.2727e-01 | 1.2045e-01 |
±6.13e-02 | ±1.40e-02 | ±2.80e-02 | ±2.91e-02 | ±2.80e-02 | ±1.87e-02 | ±2.67e-02 | |
ALLAML | 4.7727e-02 | 1.5682e-01 | 1.5909e-01 | 1.6591e-01 | 1.6364e-01 | 1.5000e-01 | 1.5000e-01 |
±5.00e-02 | ±2.75e-02 | ±2.33e-02 | ±3.05e-02 | ±2.28e-02 | ±2.99e-02 | ±2.60e-02 | |
Carcinom | 1.2308e-01 | 1.4231e-01 | 1.5000e-01 | 1.4904e-01 | 1.5000e-01 | † 1.3846e-01 | † 1.3269e-01 |
±3.02e-02 | ±1.91e-02 | ±2.30e-02 | ±2.15e-02 | ±2.03e-02 | ±1.60e-02 | ±1.64e-02 | |
Nci9 | 5.4474e-01 | 6.5789e-01 | 6.3421e-01 | 6.6053e-01 | 6.4211e-01 | 6.5526e-01 | 6.3158e-01 |
±8.24e-02 | ±4.68e-02 | ±5.26e-02 | ±4.67e-02 | ±4.39e-02 | ±4.00e-02 | ±4.83e-02 | |
Arcene | 1.4583e-01 | 4.3333e-01 | 4.3333e-01 | 4.3333e-01 | 4.3333e-01 | 4.3333e-01 | 4.3333e-01 |
±2.70e-02 | ±1.14e-16 | ±1.14e-16 | ±1.14e-16 | ±1.14e-16 | ±1.14e-16 | ±1.14e-16 | |
Orlraws10P | 3.8333e-02 | 1.0500e-01 | 1.1167e-01 | 1.0333e-01 | 1.0500e-01 | 1.0167e-01 | 1.0333e-01 |
±3.11e-02 | ±1.22e-02 | ±1.63e-02 | ±1.03e-02 | ±1.22e-02 | ±7.45e-03 | ±1.03e-02 | |
Brain2 | 3.0667e-01 | 3.7667e-01 | 3.9667e-01 | 3.9333e-01 | 3.9000e-01 | 3.7000e-01 | 3.7333e-01 |
±8.21e-02 | ±3.91e-02 | ±4.03e-02 | ±4.79e-02 | ±3.91e-02 | ±3.40e-02 | ±4.54e-02 | |
Prostate | 6.1290e-02 | 2.4194e-01 | 2.6129e-01 | 2.5645e-01 | 2.4355e-01 | 2.2742e-01 | 2.2581e-01 |
±4.43e-02 | ±2.45e-02 | ±2.94e-02 | ±1.95e-02 | ±1.95e-02 | ±1.65e-02 | ±2.56e-02 |
Dataset | HIER | NSGA-II | MOEA/D | HypE | MOEA/HD | SparseEA | DAEA |
---|---|---|---|---|---|---|---|
HillValley | 4.3500e+00 | 1.1200e+01 | † 3.2500e+00 | † 6.6000e+00 | † 3.8500e+00 | † 4.0500e+00 | † 3.5500e+00 |
±3.01e+00 | ±6.46e+00 | ±1.92e+00 | ±4.91e+00 | ±3.45e+00 | ±2.91e+00 | ±3.10e+00 | |
MUSK1 | 2.8650e+01 | † 3.3950e+01 | 2.1150e+01 | † 2.9950e+01 | † 2.8450e+01 | † 2.6800e+01 | † 2.7800e+01 |
±1.12e+01 | ±1.13e+01 | ±1.08e+01 | ±9.45e+00 | ±1.21e+01 | ±1.50e+01 | ±8.97e+00 | |
Arrhythmia | 9.4500e+00 | 1.6550e+01 | 1.2150e+01 | 1.8850e+01 | 5.0900e+01 | 3.6950e+01 | † 1.0050e+01 |
±2.86e+00 | ±6.20e+00 | ±3.87e+00 | ±1.14e+01 | ±3.31e+00 | ±7.40e+00 | ±5.69e+00 | |
Yale | 1.9000e+01 | 3.3400e+02 | 2.6825e+02 | 3.3800e+02 | 3.2915e+02 | 3.8475e+02 | 2.3105e+02 |
±8.35e+00 | ±2.99e+01 | ±1.46e+01 | ±1.10e+01 | ±1.68e+01 | ±2.03e+01 | ±4.03e+01 | |
Colon | 3.9000e+00 | 6.9905e+02 | 5.5090e+02 | 7.2470e+02 | 7.3735e+02 | 8.7520e+02 | 4.8045e+02 |
±4.01e+00 | ±1.50e+01 | ±5.59e+01 | ±3.36e+01 | ±2.43e+01 | ±3.37e+01 | ±3.17e+01 | |
SRBCT | 1.1700e+01 | 8.1420e+02 | 6.0965e+02 | 8.0820e+02 | 9.8835e+02 | 1.0337e+03 | 7.0040e+02 |
±1.27e+01 | ±1.24e+01 | ±1.23e+01 | ±1.39e+01 | ±1.10e+01 | ±1.03e+01 | ±1.19e+02 | |
AR10P | 1.4850e+01 | 9.1535e+02 | 7.8260e+02 | 9.4745e+02 | 9.3110e+02 | 1.0808e+03 | 6.9200e+02 |
±5.97e+00 | ±1.77e+01 | ±2.61e+01 | ±5.17e+01 | ±2.85e+01 | ±3.27e+01 | ±7.48e+01 | |
PIE10P | 1.4800e+01 | 9.0765e+02 | 7.6480e+02 | 9.3650e+02 | 9.4000e+02 | 1.0852e+03 | 6.7210e+02 |
±3.72e+00 | ±2.51e+01 | ±2.78e+01 | ±1.91e+01 | ±2.50e+01 | ±2.95e+01 | ±3.75e+01 | |
Leukemia1 | 3.5500e+00 | 2.2284e+03 | 2.0482e+03 | 2.2672e+03 | 2.3012e+03 | 2.5398e+03 | 1.7904e+03 |
±1.54e+00 | ±2.11e+01 | ±8.40e+01 | ±3.81e+01 | ±3.01e+01 | ±3.41e+01 | ±7.59e+01 | |
Tumor9 | 2.0750e+01 | 2.4570e+03 | 2.3302e+03 | 2.5034e+03 | 2.5214e+03 | 2.7432e+03 | 1.9975e+03 |
±1.13e+01 | ±3.33e+01 | ±4.08e+01 | ±2.67e+01 | ±4.34e+01 | ±2.99e+01 | ±6.94e+01 | |
TOX171 | 2.9450e+01 | 2.5100e+03 | 2.3762e+03 | 2.5703e+03 | 2.5303e+03 | 2.7681e+03 | 2.0640e+03 |
±1.27e+01 | ±6.23e+01 | ±3.48e+01 | ±6.66e+01 | ±3.03e+01 | ±3.54e+01 | ±6.63e+01 | |
Brain1 | 6.3500e+00 | 2.4922e+03 | 2.3319e+03 | 2.5038e+03 | 2.6484e+03 | 2.8378e+03 | 2.1434e+03 |
±4.44e+00 | ±2.65e+01 | ±9.29e+01 | ±3.08e+01 | ±8.53e+01 | ±1.52e+01 | ±7.27e+01 | |
Leukemia2 | 2.0500e+00 | 3.0410e+03 | 2.8929e+03 | 3.0675e+03 | 3.1837e+03 | 3.4228e+03 | 2.5413e+03 |
±1.39e+00 | ±3.44e+01 | ±1.06e+02 | ±3.57e+01 | ±5.71e+01 | ±3.21e+01 | ±8.82e+01 | |
ALLAML | 2.1000e+00 | 3.0848e+03 | 2.9301e+03 | 3.1164e+03 | 3.1823e+03 | 3.4504e+03 | 2.5657e+03 |
±1.07e+00 | ±2.61e+01 | ±4.67e+01 | ±3.68e+01 | ±4.63e+01 | ±3.33e+01 | ±5.94e+01 | |
Carcinom | 2.3350e+01 | 4.0971e+03 | 3.9811e+03 | 4.1602e+03 | 4.1489e+03 | 4.4926e+03 | 3.4802e+03 |
±7.86e+00 | ±3.82e+01 | ±6.53e+01 | ±4.30e+01 | ±3.06e+01 | ±3.26e+01 | ±1.01e+02 | |
Nci9 | 1.3250e+01 | 4.2878e+03 | 4.0833e+03 | 4.2805e+03 | 4.6002e+03 | 4.7272e+03 | 3.8900e+03 |
±1.20e+01 | ±3.25e+01 | ±3.29e+01 | ±3.16e+01 | ±2.86e+01 | ±1.76e+01 | ±4.30e+01 | |
Arcene | 1.3350e+01 | 4.4209e+03 | 4.2405e+03 | 4.4179e+03 | 4.7479e+03 | 4.8754e+03 | 3.9959e+03 |
±6.95e+00 | ±1.99e+01 | ±3.35e+01 | ±3.68e+01 | ±2.25e+01 | ±2.34e+01 | ±5.00e+01 | |
Orlraws10P | 1.3250e+01 | 4.5808e+03 | 4.4630e+03 | 4.6233e+03 | 4.6971e+03 | 5.0229e+03 | 3.8903e+03 |
±5.37e+00 | ±3.63e+01 | ±4.45e+01 | ±3.48e+01 | ±5.78e+01 | ±2.67e+01 | ±7.47e+01 | |
Brain2 | 7.2500e+00 | 4.6416e+03 | 4.5841e+03 | 4.7026e+03 | 4.7289e+03 | 5.0841e+03 | 3.9348e+03 |
±3.70e+00 | ±4.55e+01 | ±1.21e+02 | ±2.84e+01 | ±4.01e+01 | ±3.71e+01 | ±8.19e+01 | |
Prostate | 6.5000e+00 | 4.7128e+03 | 4.5869e+03 | 4.7604e+03 | 4.7962e+03 | 5.1540e+03 | 4.0243e+03 |
±3.46e+00 | ±5.72e+01 | ±5.63e+01 | ±5.75e+01 | ±4.31e+01 | ±4.61e+01 | ±1.16e+02 |
Metric | Data | HIER | Base/HI | Base/ER | Base |
---|---|---|---|---|---|
HV | Train | 1.1300 | 2.1125 | 2.8075 | 3.9500 |
Test | 1.3350 | 1.9225 | 2.8250 | 3.9175 | |
MCE | Train | 1.3375 | 1.9038 | 3.0688 | 3.6900 |
Test | 1.7475 | 2.0975 | 2.8687 | 3.2862 | |
NSF | Train | 1.2463 | 2.0275 | 2.8862 | 3.8400 |
Test | 1.2337 | 2.0500 | 2.8862 | 3.8300 |
Dataset | HIER | Base/HI | Base/ER | Base | |||
---|---|---|---|---|---|---|---|
HillValley | 6.2892e-01 | ✓ | 6.0206e-01 | † 6.2892e-01 | ✓ | 6.0206e-01 | |
±8.46e-03 | ±2.58e-02 | ±8.46e-03 | ±2.58e-02 | ||||
MUSK1 | 8.8189e-01 | ✓ | 8.3186e-01 | † 8.8189e-01 | ✓ | 8.3186e-01 | |
±1.84e-02 | ±2.82e-02 | ±1.84e-02 | ±2.82e-02 | ||||
Arrhythmia | 6.9949e-01 | ✓ | 6.7456e-01 | ✓ | † 6.9239e-01 | ✓ | 6.1565e-01 |
±1.49e-02 | ±1.70e-02 | ±1.28e-02 | ±3.45e-02 | ||||
Yale | 7.2988e-01 | ✓ | † 7.1830e-01 | ✓ | 6.1279e-01 | ✓ | 4.9729e-01 |
±3.46e-02 | ±4.03e-02 | ±2.52e-02 | ±2.18e-02 | ||||
Colon | 8.8458e-01 | ✓ | 8.8048e-01 | ✓ | 6.9894e-01 | ✓ | 5.5372e-01 |
±5.47e-02 | ±4.48e-02 | ±2.99e-02 | ±2.85e-02 | ||||
SRBCT | 8.8158e-01 | ✓ | 8.4499e-01 | ✓ | 4.6735e-01 | ✓ | 2.8731e-01 |
±7.70e-02 | ±6.29e-02 | ±1.67e-01 | ±2.35e-03 | ||||
AR10P | 7.9190e-01 | ✓ | 7.0132e-01 | ✓ | 4.4533e-01 | ✓ | 3.5733e-01 |
±3.81e-02 | ±4.87e-02 | ±2.39e-02 | ±1.93e-02 | ||||
PIE10P | 9.5463e-01 | ✓ | † 9.7024e-01 | ✓ | 7.3321e-01 | ✓ | 6.0007e-01 |
±2.49e-02 | ±1.86e-02 | ±1.55e-02 | ±9.66e-03 | ||||
Leukemia1 | 9.4797e-01 | ✓ | 9.2420e-01 | ✓ | 6.3440e-01 | ✓ | 5.3239e-01 |
±3.25e-02 | ±5.80e-02 | ±2.17e-02 | ±1.68e-02 | ||||
Tumor9 | 5.0677e-01 | ✓ | 4.8747e-01 | ✓ | 3.1102e-01 | ✓ | 2.8046e-01 |
±5.87e-02 | ±5.37e-02 | ±2.29e-02 | ±2.54e-02 | ||||
TOX171 | 8.3099e-01 | ✓ | † 8.3398e-01 | ✓ | 5.5152e-01 | ✓ | 4.8962e-01 |
±3.79e-02 | ±3.01e-02 | ±1.21e-02 | ±1.27e-02 | ||||
Brain1 | 7.8591e-01 | ✓ | † 7.7663e-01 | ✓ | 5.5687e-01 | ✓ | 4.7613e-01 |
±3.82e-02 | ±3.34e-02 | ±5.32e-03 | ±3.95e-03 | ||||
Leukemia2 | 9.4408e-01 | ✓ | 9.2057e-01 | ✓ | 6.2342e-01 | ✓ | 5.3959e-01 |
±5.57e-02 | ±5.67e-02 | ±2.32e-02 | ±1.43e-02 | ||||
ALLAML | 9.5646e-01 | ✓ | 9.4528e-01 | ✓ | 5.9713e-01 | ✓ | 5.2342e-01 |
±4.54e-02 | ±4.46e-02 | ±1.73e-02 | ±1.73e-02 | ||||
Carcinom | 8.8720e-01 | ✓ | 8.7518e-01 | ✓ | 5.8885e-01 | ✓ | 5.2509e-01 |
±2.73e-02 | ±2.53e-02 | ±1.02e-02 | ±1.08e-02 | ||||
Nci9 | 5.0449e-01 | ✓ | † 4.9181e-01 | ✓ | 2.8777e-01 | ✓ | 2.4995e-01 |
±7.48e-02 | ±8.25e-02 | ±2.90e-02 | ±2.88e-02 | ||||
Arcene | 8.6704e-01 | ✓ | 8.5578e-01 | ✓ | 4.2071e-01 | ✓ | 3.6608e-01 |
±2.45e-02 | ±2.96e-02 | ±1.86e-03 | ±2.63e-03 | ||||
Orlraws10P | 9.6479e-01 | ✓ | 9.5124e-01 | ✓ | 6.1629e-01 | ✓ | 5.4507e-01 |
±2.83e-02 | ±3.47e-02 | ±1.12e-02 | ±6.24e-03 | ||||
Brain2 | 7.2102e-01 | ✓ | 6.7439e-01 | ✓ | 4.3591e-01 | ✓ | 3.9461e-01 |
±7.46e-02 | ±8.16e-02 | ±3.54e-02 | ±1.79e-02 | ||||
Prostate | 9.4399e-01 | ✓ | 9.1163e-01 | ✓ | 5.2506e-01 | ✓ | 4.6475e-01 |
±4.03e-02 | ±5.66e-02 | ±1.55e-02 | ±1.37e-02 |
Dataset | HIER | Base/HI | Base/ER | Base | |||
---|---|---|---|---|---|---|---|
HillValley | 4.0055e-01 | ✓ | 4.1099e-01 | † 4.0055e-01 | ✓ | 4.1099e-01 | |
±9.75e-03 | ±2.08e-02 | ±9.75e-03 | ±2.08e-02 | ||||
MUSK1 | 8.5315e-02 | ✓ | 9.4755e-02 | † 8.5315e-02 | ✓ | 9.4755e-02 | |
±1.74e-02 | ±1.78e-02 | ±1.74e-02 | ±1.78e-02 | ||||
Arrhythmia | 3.2554e-01 | ✓ | 3.4137e-01 | ✓ | † 3.2950e-01 | ✓ | 3.9137e-01 |
±1.68e-02 | ±1.77e-02 | ±1.56e-02 | ±4.20e-02 | ||||
Yale | 2.9333e-01 | ✓ | † 2.9778e-01 | ✓ | † 3.0111e-01 | ✓ | 3.4222e-01 |
±3.86e-02 | ±4.53e-02 | ±3.26e-02 | ±3.26e-02 | ||||
Colon | 1.2632e-01 | ✓ | † 1.2632e-01 | ✓ | 1.5789e-01 | ✓ | 2.0789e-01 |
±6.01e-02 | ±4.95e-02 | ±4.52e-02 | ±4.97e-02 | ||||
SRBCT | 1.2800e-01 | ✓ | † 1.6200e-01 | ✓ | 4.7600e-01 | ✓ | 6.4000e-01 |
±8.47e-02 | ±6.93e-02 | ±2.32e-01 | ±1.14e-16 | ||||
AR10P | 2.2750e-01 | ✓ | 3.2250e-01 | ✓ | 4.6750e-01 | ✓ | 5.0375e-01 |
±4.21e-02 | ±5.37e-02 | ±3.15e-02 | ±3.37e-02 | ||||
PIE10P | 4.8333e-02 | ✓ | 2.5000e-02 | ✓ | 7.4167e-02 | ✓ | 1.0083e-01 |
±2.75e-02 | ±2.06e-02 | ±2.26e-02 | ±1.38e-02 | ||||
Leukemia1 | 5.6818e-02 | ✓ | † 7.9545e-02 | ✓ | 1.4318e-01 | ✓ | 1.6364e-01 |
±3.57e-02 | ±6.41e-02 | ±3.05e-02 | ±3.09e-02 | ||||
Tumor9 | 5.4167e-01 | ✓ | † 5.6111e-01 | ✓ | 6.1111e-01 | 6.0000e-01 | |
±6.47e-02 | ±5.95e-02 | ±3.60e-02 | ±4.63e-02 | ||||
TOX171 | 1.8396e-01 | ✓ | † 1.7736e-01 | ✓ | 2.1415e-01 | ✓ | 2.1887e-01 |
±4.19e-02 | ±3.32e-02 | ±1.96e-02 | ±2.24e-02 | ||||
Brain1 | 2.3519e-01 | ✓ | † 2.4259e-01 | ✓ | 2.5926e-01 | 2.5926e-01 | |
±4.21e-02 | ±3.70e-02 | ±0.00e+00 | ±0.00e+00 | ||||
Leukemia2 | 6.1364e-02 | ✓ | † 8.6364e-02 | ✓ | 1.3636e-01 | 1.3636e-01 | |
±6.13e-02 | ±6.24e-02 | ±3.30e-02 | ±2.55e-02 | ||||
ALLAML | 4.7727e-02 | ✓ | † 5.9091e-02 | ✓ | 1.6364e-01 | 1.6136e-01 | |
±5.00e-02 | ±4.91e-02 | ±2.72e-02 | ±3.12e-02 | ||||
Carcinom | 1.2308e-01 | ✓ | † 1.3462e-01 | ✓ | † 1.3269e-01 | ✓ | † 1.3558e-01 |
±3.02e-02 | ±2.79e-02 | ±1.52e-02 | ±1.82e-02 | ||||
Nci9 | 5.4474e-01 | ✓ | † 5.5789e-01 | ✓ | 6.4474e-01 | ✓ | 6.4737e-01 |
±8.24e-02 | ±9.10e-02 | ±4.48e-02 | ±5.15e-02 | ||||
Arcene | 1.4583e-01 | ✓ | † 1.5667e-01 | ✓ | 4.3333e-01 | 4.3333e-01 | |
±2.70e-02 | ±3.26e-02 | ±1.14e-16 | ±1.14e-16 | ||||
Orlraws10P | 3.8333e-02 | ✓ | † 5.1667e-02 | ✓ | 1.0667e-01 | 1.0333e-01 | |
±3.11e-02 | ±3.82e-02 | ±1.37e-02 | ±1.03e-02 | ||||
Brain2 | 3.0667e-01 | ✓ | † 3.5667e-01 | ✓ | 3.9000e-01 | 3.7667e-01 | |
±8.21e-02 | ±8.99e-02 | ±5.83e-02 | ±3.26e-02 | ||||
Prostate | 6.1290e-02 | ✓ | 9.5161e-02 | ✓ | 2.4194e-01 | ✓ | 2.4516e-01 |
±4.43e-02 | ±6.23e-02 | ±2.67e-02 | ±2.20e-02 |
Dataset | HIER | Base/HI | Base/ER | Base | |||
---|---|---|---|---|---|---|---|
HillValley | 4.3500e+00 | ✓ | 9.3000e+00 | † 4.3500e+00 | ✓ | 9.3000e+00 | |
±3.01e+00 | ±5.10e+00 | ±3.01e+00 | ±5.10e+00 | ||||
MUSK1 | 2.8650e+01 | † 2.7550e+01 | † 2.8650e+01 | † 2.7550e+01 | |||
±1.12e+01 | ±7.44e+00 | ±1.12e+01 | ±7.44e+00 | ||||
Arrhythmia | 9.4500e+00 | ✓ | 1.3250e+01 | ✓ | † 1.0100e+01 | ✓ | 1.9000e+01 |
±2.86e+00 | ±4.70e+00 | ±4.36e+00 | ±6.83e+00 | ||||
Yale | 1.9000e+01 | ✓ | 2.9850e+01 | ✓ | 1.8300e+02 | ✓ | 3.2705e+02 |
±8.35e+00 | ±1.10e+01 | ±1.15e+01 | ±3.23e+01 | ||||
Colon | 3.9000e+00 | ✓ | 1.3750e+01 | ✓ | 4.0850e+02 | ✓ | 7.0025e+02 |
±4.01e+00 | ±4.92e+00 | ±3.07e+01 | ±1.44e+01 | ||||
SRBCT | 1.1700e+01 | ✓ | 3.2550e+01 | ✓ | 4.4115e+02 | ✓ | 7.9455e+02 |
±1.27e+01 | ±1.22e+01 | ±4.02e+01 | ±1.43e+01 | ||||
AR10P | 1.4850e+01 | ✓ | 2.8450e+01 | ✓ | 6.1860e+02 | ✓ | 9.3145e+02 |
±5.97e+00 | ±5.45e+00 | ±4.64e+01 | ±5.75e+01 | ||||
PIE10P | 1.4800e+01 | ✓ | 3.2850e+01 | ✓ | 5.9990e+02 | ✓ | 9.0505e+02 |
±3.72e+00 | ±1.52e+01 | ±4.80e+01 | ±1.69e+01 | ||||
Leukemia1 | 3.5500e+00 | ✓ | 2.4300e+01 | ✓ | 1.5901e+03 | ✓ | 2.2003e+03 |
±1.54e+00 | ±5.25e+00 | ±4.96e+01 | ±4.57e+01 | ||||
Tumor9 | 2.0750e+01 | ✓ | 4.0000e+01 | ✓ | 1.8952e+03 | ✓ | 2.4187e+03 |
±1.13e+01 | ±1.21e+01 | ±5.26e+01 | ±5.87e+01 | ||||
TOX171 | 2.9450e+01 | ✓ | 5.3700e+01 | ✓ | 2.0159e+03 | ✓ | 2.4728e+03 |
±1.27e+01 | ±1.57e+01 | ±6.33e+01 | ±4.90e+01 | ||||
Brain1 | 6.3500e+00 | ✓ | 2.6750e+01 | ✓ | 1.7675e+03 | ✓ | 2.4553e+03 |
±4.44e+00 | ±8.84e+00 | ±4.53e+01 | ±3.36e+01 | ||||
Leukemia2 | 2.0500e+00 | ✓ | 9.2500e+00 | ✓ | 2.2483e+03 | ✓ | 2.9917e+03 |
±1.39e+00 | ±2.75e+00 | ±6.90e+01 | ±3.79e+01 | ||||
ALLAML | 2.1000e+00 | ✓ | 9.7500e+00 | ✓ | 2.3678e+03 | ✓ | 3.0438e+03 |
±1.07e+00 | ±2.86e+00 | ±1.09e+02 | ±4.66e+01 | ||||
Carcinom | 2.3350e+01 | ✓ | 5.2000e+01 | ✓ | 3.3603e+03 | ✓ | 4.0616e+03 |
±7.86e+00 | ±1.35e+01 | ±8.42e+01 | ±5.96e+01 | ||||
Nci9 | 1.3250e+01 | ✓ | 2.9150e+01 | ✓ | 3.2576e+03 | ✓ | 4.1949e+03 |
±1.20e+01 | ±1.01e+01 | ±8.85e+01 | ±3.19e+01 | ||||
Arcene | 1.3350e+01 | ✓ | 3.1550e+01 | ✓ | 3.3642e+03 | ✓ | 4.3557e+03 |
±6.95e+00 | ±1.06e+01 | ±3.38e+01 | ±4.77e+01 | ||||
Orlraws10P | 1.3250e+01 | ✓ | 2.4550e+01 | ✓ | 3.5998e+03 | ✓ | 4.5159e+03 |
±5.37e+00 | ±4.20e+00 | ±8.68e+01 | ±3.09e+01 | ||||
Brain2 | 7.2500e+00 | ✓ | 2.5250e+01 | ✓ | 3.7093e+03 | ✓ | 4.5658e+03 |
±3.70e+00 | ±7.18e+00 | ±1.02e+02 | ±4.33e+01 | ||||
Prostate | 6.5000e+00 | ✓ | 2.8750e+01 | ✓ | 3.7854e+03 | ✓ | 4.6622e+03 |
±3.46e+00 | ±9.90e+00 | ±6.45e+01 | ±5.72e+01 |
Dataset | HIER | NSGA-II | MOEA/D | HypE | MOEA/HD | SparseEA | DAEA |
---|---|---|---|---|---|---|---|
HillValley | 1.6542e+02 | 1.3886e+02 | 1.1863e+02 | 1.3268e+02 | 1.3296e+02 | 1.2853e+02 | 1.3046e+02 |
±2.29e+00 | ±5.31e+00 | ±1.30e+00 | ±2.11e+00 | ±3.03e+00 | ±4.11e+00 | ±2.42e+00 | |
MUSK1 | 1.5299e+02 | 1.2916e+02 | 1.0806e+02 | 1.2888e+02 | 1.2909e+02 | 1.2506e+02 | 1.1893e+02 |
±3.12e+00 | ±3.75e+00 | ±2.35e+00 | ±2.70e+00 | ±5.20e+00 | ±4.18e+00 | ±2.17e+00 | |
Arrhythmia | 1.2357e+02 | † 1.2683e+02 | † 1.2521e+02 | 1.1269e+02 | 1.4024e+02 | 1.5856e+02 | 1.1801e+02 |
±2.96e+00 | ±8.77e+00 | ±6.33e+00 | ±1.30e+01 | ±3.60e+00 | ±4.70e+00 | ±5.54e+00 | |
Yale | 7.1823e+01 | 1.3820e+02 | 1.3998e+02 | 1.4007e+02 | 1.4154e+02 | 1.4353e+02 | 1.3358e+02 |
±8.93e-01 | ±2.61e+00 | ±2.37e+00 | ±1.93e+00 | ±2.96e+00 | ±1.92e+00 | ±2.81e+00 | |
Colon | 4.1085e+01 | 6.5188e+01 | 7.4923e+01 | 6.7189e+01 | 6.8834e+01 | 6.8019e+01 | 7.4603e+01 |
±4.34e-01 | ±8.52e-01 | ±1.54e+00 | ±9.17e-01 | ±9.49e-01 | ±7.63e-01 | ±9.65e-01 | |
SRBCT | 6.3116e+01 | 1.2351e+02 | 1.2505e+02 | 1.1532e+02 | 1.2714e+02 | 1.1498e+02 | 1.2557e+02 |
±6.48e-01 | ±9.46e+00 | ±1.40e+00 | ±1.17e+00 | ±1.23e+00 | ±1.16e+00 | ±4.77e+00 | |
AR10P | 1.4548e+02 | 3.1300e+02 | 2.6741e+02 | 2.7840e+02 | 2.8346e+02 | 2.6225e+02 | 2.7489e+02 |
±2.21e+00 | ±4.12e+01 | ±7.94e+00 | ±9.79e+00 | ±7.91e+00 | ±6.51e+00 | ±1.06e+01 | |
PIE10P | 2.5280e+02 | 1.0896e+04 | 6.7676e+02 | 7.0708e+02 | 7.1007e+02 | 6.5288e+02 | 6.1220e+02 |
±2.73e+00 | ±1.11e+04 | ±1.93e+01 | ±2.34e+01 | ±2.47e+01 | ±1.28e+01 | ±1.69e+01 | |
Leukemia1 | 1.9317e+02 | 4.5790e+02 | 3.3060e+02 | 3.4796e+02 | 3.4160e+02 | 2.6899e+02 | 3.7272e+02 |
±1.92e+00 | ±6.68e+00 | ±9.08e+00 | ±3.73e+00 | ±3.17e+00 | ±4.54e+00 | ±5.57e+00 | |
Tumor9 | 1.6337e+02 | 4.4825e+02 | 3.0571e+02 | 3.1021e+02 | 3.0621e+02 | 2.3338e+02 | 3.4640e+02 |
±2.98e+00 | ±2.07e+01 | ±3.95e+00 | ±2.93e+00 | ±3.18e+00 | ±5.95e+00 | ±5.31e+00 | |
TOX171 | 5.3810e+02 | 1.2920e+03 | 1.4180e+03 | 1.4445e+03 | 1.4350e+03 | 8.9183e+02 | 1.3980e+03 |
±3.02e+01 | ±2.58e+01 | ±2.91e+01 | ±2.96e+01 | ±3.31e+01 | ±8.35e+00 | ±2.98e+01 | |
Brain1 | 2.6227e+02 | 9.4599e+02 | 6.3031e+02 | 6.4571e+02 | 6.9449e+02 | 4.2454e+02 | 6.8087e+02 |
±4.27e+00 | ±5.02e+01 | ±1.09e+01 | ±2.65e+01 | ±1.13e+01 | ±1.32e+01 | ±1.81e+01 | |
Leukemia2 | 2.4579e+02 | 6.4440e+02 | 6.3381e+02 | 6.5402e+02 | 6.5913e+02 | 3.4785e+02 | 6.0041e+02 |
±3.70e+00 | ±1.01e+01 | ±1.84e+01 | ±1.25e+01 | ±1.61e+01 | ±8.51e+00 | ±1.06e+01 | |
ALLAML | 2.5027e+02 | 8.9622e+02 | 6.4559e+02 | 6.6036e+02 | 6.6043e+02 | 3.5437e+02 | 6.1682e+02 |
±4.92e+00 | ±3.85e+01 | ±1.46e+01 | ±1.44e+01 | ±1.45e+01 | ±8.26e+00 | ±1.07e+01 | |
Carcinom | 8.4547e+02 | 2.1541e+03 | 2.3686e+03 | 2.4095e+03 | 2.4011e+03 | 8.9313e+02 | 2.3300e+03 |
±3.53e+01 | ±7.39e+01 | ±3.80e+01 | ±4.63e+01 | ±4.49e+01 | ±8.86e+00 | ±4.14e+01 | |
Nci9 | 3.1374e+02 | 1.0316e+03 | 7.0608e+02 | 6.9304e+02 | 6.6720e+02 | † 2.9938e+02 | 7.7338e+02 |
±1.83e+01 | ±4.64e+01 | ±1.95e+01 | ±2.35e+01 | ±1.47e+01 | ±3.33e+00 | ±1.28e+01 | |
Arcene | 1.0505e+03 | 2.9155e+03 | 3.0924e+03 | 2.9755e+03 | 3.2501e+03 | 9.6620e+02 | 3.0443e+03 |
±2.62e+01 | ±4.38e+01 | ±6.12e+01 | ±1.58e+01 | ±5.47e+01 | ±1.22e+01 | ±3.80e+01 | |
Orlraws10P | 5.4502e+02 | 1.3103e+03 | 1.2668e+03 | 1.2411e+03 | 1.3601e+03 | † 5.0940e+02 | 1.2799e+03 |
±4.24e+01 | ±1.58e+01 | ±3.51e+01 | ±2.45e+01 | ±2.66e+01 | ±6.23e+00 | ±4.12e+01 | |
Brain2 | 2.8679e+02 | 7.0154e+02 | 6.3982e+02 | 6.5642e+02 | 6.4192e+02 | † 2.7188e+02 | 6.8426e+02 |
±2.12e+01 | ±1.26e+01 | ±1.03e+01 | ±1.07e+01 | ±2.01e+01 | ±6.72e+00 | ±1.88e+01 | |
Prostate | 5.6033e+02 | 1.9147e+03 | 1.3660e+03 | 1.3550e+03 | 1.3583e+03 | † 5.3659e+02 | 1.4231e+03 |
±5.23e+01 | ±4.50e+01 | ±7.34e+01 | ±5.96e+01 | ±4.33e+01 | ±4.60e+00 | ±1.88e+01 |
Metric | Data | HIER | NSGA-II | MOEA/D | HypE | MOEA/HD | SparseEA | DAEA |
---|---|---|---|---|---|---|---|---|
Time | Train | 1.1975 | 4.5800 | 3.4475 | 4.7475 | 5.5650 | 6.4850 | 1.9775 |
Test | 1.2138 | 4.5250 | 3.6162 | 5.0713 | 5.3213 | 6.0563 | 2.1963 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Huang, C.; Wen, H.; Yan, T.; Lin, Y.; Xie, Y. A Hybrid Initialization and Effective Reproduction-Based Evolutionary Algorithm for Tackling Bi-Objective Large-Scale Feature Selection in Classification. Mathematics 2024, 12, 554. https://doi.org/10.3390/math12040554
Xu H, Huang C, Wen H, Yan T, Lin Y, Xie Y. A Hybrid Initialization and Effective Reproduction-Based Evolutionary Algorithm for Tackling Bi-Objective Large-Scale Feature Selection in Classification. Mathematics. 2024; 12(4):554. https://doi.org/10.3390/math12040554
Chicago/Turabian StyleXu, Hang, Chaohui Huang, Hui Wen, Tao Yan, Yuanmo Lin, and Ying Xie. 2024. "A Hybrid Initialization and Effective Reproduction-Based Evolutionary Algorithm for Tackling Bi-Objective Large-Scale Feature Selection in Classification" Mathematics 12, no. 4: 554. https://doi.org/10.3390/math12040554
APA StyleXu, H., Huang, C., Wen, H., Yan, T., Lin, Y., & Xie, Y. (2024). A Hybrid Initialization and Effective Reproduction-Based Evolutionary Algorithm for Tackling Bi-Objective Large-Scale Feature Selection in Classification. Mathematics, 12(4), 554. https://doi.org/10.3390/math12040554