An ETD Method for Vulnerable American Options
Abstract
:1. Introduction
2. Vulnerable Option Modeling
3. Numerical Solution
3.1. Mixed Derivative Terms Removing
3.2. Semi-Discretization
3.3. Default Case Solution
- If (default occurs prior maturity) and , then
- If (no default), then
4. Numerical Results
4.1. Numerical Stability
4.2. Numerical Convergence
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ETD | Exponential time differencing |
FD | Finite difference |
FDM | Finite difference method |
PDE | Partial differential equation |
ODE | Ordinary differential equation |
References
- Johnson, H.; Stulz, R. The Pricing of Options with Default Risk. J. Financ. 1987, 42, 267–280. [Google Scholar] [CrossRef]
- Klein, P.G. Pricing Black-Scholes options with correlated credit risk. J. Bank. Financ. 1996, 20, 1211–1229. [Google Scholar] [CrossRef]
- Klein, P.; Inglis, M. Pricing vulnerable European options when the option’s payoff can increase the risk of financial distress. J. Bank. Financ. 2001, 25, 993–1012. [Google Scholar] [CrossRef]
- Liao, S.L.; Huang, H.H. Pricing Black–Scholes options with correlated interest rate risk and credit risk: An extension. Quant. Financ. 2005, 5, 443–457. [Google Scholar] [CrossRef]
- Hung, M.W.; Liu, Y.H. Pricing vulnerable options in incomplete markets. J. Futur. Mark. 2005, 25, 135–170. [Google Scholar] [CrossRef]
- Klein, P.; Yang, J. Vulnerable American options. Manag. Financ. 2010, 36, 414–430. [Google Scholar] [CrossRef]
- Zhou, R. Back to CVA: The Case of American Option. 2019. Available online: https://ssrn.com/abstract=3189805 (accessed on 14 February 2024).
- Chang, L.F.; Hung, M.W. Valuation of vulnerable American options with correlated credit risk. Rev. Deriv. Res. 2006, 9, 137–165. [Google Scholar] [CrossRef]
- Wang, G.; Wang, X.; Liu, Z. Pricing vulnerable American put options under jump-diffusion processes. Probab. Eng. Inform. Sci. 2016, 31, 121–138. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, Q.; Xiao, W. Pricing vulnerable American put options under jump-diffusion processes when corporate liabilities are random. Commun. Stat. Simul. Comput. 2021, 52, 5462–5482. [Google Scholar] [CrossRef]
- Zvan, R.; Forsyth, P.; Vetzal, K. Negative coefficients in two-factor option pricing models. J. Comput. Financ. 2003, 7, 37–73. [Google Scholar] [CrossRef]
- Gyulov, T.B.; Koleva, M.N. Penalty method for indifference pricing of American option in a liquidity switching market. Appl. Numer. Math. 2022, 172, 525–545. [Google Scholar] [CrossRef]
- Company, R.; Egorova, V.N.; Jódar, L.; Soleymanim, F. A mixed derivative terms removing method in multi-asset option pricing problems. Appl. Math. Lett. 2016, 60, 108–114. [Google Scholar] [CrossRef]
- Cox, S.M.; Matthews, P.C. Exponential Time Differencing for Stiff Systems. J. Comput. Phys. 2002, 176, 430–455. [Google Scholar] [CrossRef]
- Black, F.; Scholes, M. The Pricing of Options and Corporate Liabilities. J. Political Econ. 1973, 81, 637–654. [Google Scholar] [CrossRef]
- Company, R.; Egorova, V.N.; Jódar, L. Conditional full stability of positivity-preserving finite difference scheme for diffusion-advection-reaction models. J. Comput. Appl. Math. 2018, 341, 157–168. [Google Scholar] [CrossRef]
- Company, R.; Egorova, V.N.; Jódar, L. A front-fixing ETD numerical method for solving jump-diffusion American option pricing problems. Math. Comput. Simul. 2021, 189, 69–84. [Google Scholar] [CrossRef]
- Nielsen, B.F.; Skavhaug, O.; Tvelto, A. Penalty and front-fixing methods for the numerical solution of American option problems. J. Comput. Financ. 2002, 5, 69–97. [Google Scholar] [CrossRef]
- Tangman, D.Y.; Gopaul, A.; Bhuruth, M. A fast high-order finite difference algorithm for pricing American options. J. Comput. Appl. Math. 2008, 222, 17–29. [Google Scholar] [CrossRef]
- Geske, R.; Johnson, H.E. The American Put Option Valued Analytically. J. Financ. 1984, 39, 1511–1524. [Google Scholar] [CrossRef]
- Ju, N. Pricing an American option by approximating its early exercise boundary as a multipiece exponential function. Rev. Financ. Stud. 1998, 11, 627–646. [Google Scholar] [CrossRef]
- Hon, Y.C. A Quasi-Radial Basis Functions Method for American Options Pricing. Comput. Math. Appl. 2002, 43, 513–524. [Google Scholar] [CrossRef]
- Giribone, P.G.; Ligato, S. Option pricing via radial basis functions: Performance comparison with traditional numerical integration scheme and parameters choice for a reliable pricing. Int. J. Financ. Eng. (IJFE) 2015, 2, 1–30. [Google Scholar] [CrossRef]
- Company, R.; Egorova, V.N.; Jódar, L. Solving American option pricing models by the front fixing method: Numerical analysis and computing. Abstr. Appl. Anal. 2014, 2014, 146745. [Google Scholar] [CrossRef]
- Hull, J.; White, A. The impact of default risk on the prices of options and other derivative securities. J. Bank. Financ. 1995, 19, 299–322. [Google Scholar] [CrossRef]
- Chen, W.; Li, W.; Luo, Z.; Wang, C.; Wang, X. A stabilized second order exponential time differencing multistep method for thin film growth model without slope selection. ESAIM Math. Model. Numer. Anal. 2020, 54, 727–750. [Google Scholar] [CrossRef]
- Cheng, K.; Qiao, Z.; Wang, C. A Third Order Exponential Time Differencing Numerical Scheme for No-Slope-Selection Epitaxial Thin Film Model with Energy Stability. J. Sci. Comput. 2019, 81, 154–185. [Google Scholar] [CrossRef]
- Company, R.; Egorova, V.N.; Jódar, L.; Peris, J. A front-fixing method for American option pricing on zero-coupon bond under the Hull and White model. Math. Meth. Appl. Sci. 2022, 45, 3334–3344. [Google Scholar] [CrossRef]
S | Non-Vulnerable | ||||||
---|---|---|---|---|---|---|---|
157 | 43 | 42.99 | 43 | 42.99 | 43 | 43.00 | 43 |
158 | 42 | 41.99 | 42 | 41.99 | 42 | 42.00 | 42.00 |
159 | 41 | 40.99 | 41 | 40.99 | 41.01 | 41.03 | 41.08 |
160 | 40 | 39.99 | 40 | 39.99 | 40.07 | 40.09 | 40.17 |
161 | 39 | 38.99 | 39 | 39.02 | 39.14 | 39.13 | 39.27 |
162 | 38 | 37.99 | 38 | 38.05 | 38.22 | 38.22 | 38.37 |
163 | 37 | 37.01 | 37.02 | 37.09 | 37.30 | 37.32 | 37.49 |
164 | 36 | 36.02 | 36.11 | 36.14 | 36.38 | 36.42 | 36.65 |
165 | 35 | 35.08 | 35.18 | 35.22 | 35.47 | 35.52 | 35.83 |
166 | 34.03 | 34.14 | 34.26 | 34.31 | 34.56 | 34.63 | 35.01 |
167 | 33.10 | 33.18 | 33.34 | 33.40 | 33.72 | 33.74 | 34.19 |
168 | 32.16 | 32.30 | 32.43 | 32.52 | 32.84 | 32.85 | 33.40 |
169 | 31.23 | 31.42 | 31.52 | 31.66 | 31.96 | 31.97 | 32.63 |
170 | 30.39 | 30.55 | 30.63 | 30.79 | 31.11 | 31.12 | 31.89 |
0 | 10 | ||||
---|---|---|---|---|---|
1.9246 | |
1.7748 | |
1.0765 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Company, R.; Egorova, V.N.; Jódar, L. An ETD Method for Vulnerable American Options. Mathematics 2024, 12, 602. https://doi.org/10.3390/math12040602
Company R, Egorova VN, Jódar L. An ETD Method for Vulnerable American Options. Mathematics. 2024; 12(4):602. https://doi.org/10.3390/math12040602
Chicago/Turabian StyleCompany, Rafael, Vera N. Egorova, and Lucas Jódar. 2024. "An ETD Method for Vulnerable American Options" Mathematics 12, no. 4: 602. https://doi.org/10.3390/math12040602
APA StyleCompany, R., Egorova, V. N., & Jódar, L. (2024). An ETD Method for Vulnerable American Options. Mathematics, 12(4), 602. https://doi.org/10.3390/math12040602