Urban Economic Resilience and Supply Chain Dynamics: Evaluating Monetary Recovery Policies in Global Cities during the Early COVID-19 Pandemic
Abstract
:1. Introduction
2. Literature Review
2.1. Economic Resilience and Supply Chain Disruptions during a Public Crisis
2.2. Urban Response and Supply Chain Recovery
2.3. Efficiency of Economic Support Policies in Supply Chain Context
3. Methodology
3.1. Research Design
3.2. Description of Data and Variables
3.3. Statistical Methods
3.3.1. Principal Component Analysis (PCA)
3.3.2. Data Envelopment Analysis (DEA)
3.3.3. Tobit Model
4. Results and Discussion
4.1. CCR Evaluation and Analysis of Economic Policy Efficiency
4.1.1. Impact of Policy Quantity and Industry Involvement
4.1.2. Total Capital Investment and Individual Subsidy Analysis
4.1.3. Comparative Analysis of Investment Strategies
4.2. BCC Efficiency Evaluation (Dynamic Efficiency Evaluation)
4.2.1. Gradient Analysis of BCC Results
4.2.2. Policy Quantity and Efficiency
4.2.3. Industry Involvement and Policy Efficiency
4.3. Summary of DEA Analysis
4.4. Decisive Effect Analysis (Tobit Regression)
5. Implications and Limitations
5.1. Conclusions
5.2. Implications
5.2.1. Theoretical Implications
5.2.2. Implications for Practice
5.3. Limitations and Future Research
- Extending the data observation period to encompass a longer economic cycle, enabling a more holistic analysis of policy efficiency;
- Incorporating policy implementation as an additional factor in the efficiency evaluation to provide a more nuanced understanding of policy impacts;
- Integrating time series analysis to assess the evolving effectiveness of policies across different stages of economic recovery.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Coleman, R.; Mullin-McCandlish, B. The harms of state, free-market common sense and COVID-19. State Crime J. 2021, 10, 170. [Google Scholar] [CrossRef]
- The World Bank. The World Bank Annual Report 2021: From Crisis to Green, Resilient, and Inclusive Recovery; The World Bank: Washington, DC, USA, 2021. [Google Scholar]
- Bonadio, B.; Huo, Z.; Levchenko, A.A.; Pandalai-Nayar, N. Global supply chains in the pandemic. J. Int. Econ. 2021, 133, 103534. [Google Scholar] [CrossRef]
- Zhang, Z. China’s support policies for businesses under COVID-19: A comprehensive list. China Briefing News, 24 May 2020. [Google Scholar]
- Naseer, S.; Khalid, S.; Parveen, S.; Abbass, K.; Song, H.; Achim, M.V. COVID-19 outbreak: Impact on global economy. Front. Public Health 2023, 10, 1009393. [Google Scholar] [CrossRef]
- Maclellan, N. The Region in Review: International Issues and Events, 2021. Contemp. Pac. 2022, 34, 422–446. [Google Scholar] [CrossRef]
- Ligo, A.K.; Mahoney, E.; Cegan, J.; Trump, B.D.; Jin, A.S.; Kitsak, M.; Keenan, J.; Linkov, I. Relationship among state reopening policies, health outcomes and economic recovery through first wave of the COVID-19 pandemic in the US. PLoS ONE 2021, 16, e0260015. [Google Scholar] [CrossRef]
- Vo, N.N.; Xu, G.; Le, D.A. Causal Inference for the Impact of Economic Policy on Financial and Labour Markets amid the COVID-19 Pandemic. Web Intell. 2022, 20, 1–19. [Google Scholar] [CrossRef]
- Falkendal, T.; Otto, C.; Schewe, J.; Jägermeyr, J.; Konar, M.; Kummu, M.; Watkins, B.; Puma, M.J. Grain export restrictions during COVID-19 risk food insecurity in many low-and middle-income countries. Nat. Food 2021, 2, 11–14. [Google Scholar] [CrossRef]
- Rozhkov, M.; Ivanov, D.; Blackhurst, J.; Nair, A. Adapting supply chain operations in anticipation of and during the COVID-19 pandemic. Omega 2022, 110, 102635. [Google Scholar] [CrossRef]
- Li, X.; Fang, Y.; Chen, G.; Liu, Z. Using Pandemic Data to Examine the Government’s Pandemic Prevention Measures and Its Support Policies for Vulnerable Groups. Front. Public Health 2022, 10, 882872. [Google Scholar] [CrossRef]
- Gourio, F. Disaster risk and business cycles. Am. Econ. Rev. 2012, 102, 2734–2766. [Google Scholar] [CrossRef]
- Martin, R.; Sunley, P. On the notion of regional economic resilience: Conceptualization and explanation. J. Econ. Geogr. 2015, 15, 1–42. [Google Scholar] [CrossRef]
- Cellini, R.; Torrisi, G. Regional resilience in Italy: A very long-run analysis. Reg. Stud. 2014, 48, 1779–1796. [Google Scholar] [CrossRef]
- Islam, A.M. Impact of Covid-19 pandemic on global output, employment and prices: An assessment. Transnatl. Corp. Rev. 2021, 13, 189–201. [Google Scholar] [CrossRef]
- Wang, Y.G.; Gao, J. Economic resilience and China’s high quality development. Bus. Manag. J. 2020, 42, 7–19. [Google Scholar]
- Shi, Y.; Huang, R.; Cui, H. Prediction and analysis of tourist management strategy based on the SEIR model during the COVID-19 period. Int. J. Environ. Res. Public Health 2021, 18, 10548. [Google Scholar] [CrossRef]
- Suescún Barón, C.A.; Bernal, M.L.; Guevara Castañeda, D.A.; Morillo, Ó. Food Supply and Popular Economy in Bogotá and Some Surrounding Municipalities in Times of Pandemic. Apunt. Cenes 2022, 41, 243–274. [Google Scholar]
- Sheffi, Y. The New (ab) Normal: Reshaping Business and Supply Chain Strategy Beyond COVID-19; MIT CTL Media: Cambridge, MA, USA, 2020. [Google Scholar]
- Ivanov, D. Supply chain viability and the COVID-19 pandemic: A conceptual and formal generalisation of four major adaptation strategies. Int. J. Prod. Res. 2021, 59, 3535–3552. [Google Scholar] [CrossRef]
- ChinaBriefing. Hong Kong Budget 2021-22: Blueprint for Economic Recovery. China Briefing. 2021. Available online: https://www.China-briefing.com/news/hong-kong-budget-2021-22-blueprint-for-economic-recovery/ (accessed on 11 November 2021).
- Zou, H.; Shu, Y.; Feng, T. How Shenzhen, China avoided widespread community transmission: A potential model for successful prevention and control of COVID-19. Infect. Dis. Poverty 2020, 9, 89. [Google Scholar] [CrossRef]
- McKibbin, W.; Vines, D. Global macroeconomic cooperation in response to the COVID-19 pandemic: A roadmap for the G20 and the IMF. Oxf. Rev. Econ. Policy 2020, 36 (Suppl. S1), S297–S337. [Google Scholar] [CrossRef]
- Quah, D. Singapore’s policy response to COVID-19. In Impact of COVID-19 on Asian Economies and Policy Responses; World Scientific: Singapore, 2020; pp. 79–88. [Google Scholar]
- Lee, J.; Yang, H.-S. Pandemic and employment: Evidence from COVID-19 in South Korea. J. Asian Econ. 2022, 78, 101432. [Google Scholar] [CrossRef]
- Yabe, T.; Tsubouchi, K.; Fujiwara, N.; Wada, T.; Sekimoto, Y.; Ukkusuri, S.V. Non-compulsory measures sufficiently reduced human mobility in Tokyo during the COVID-19 epidemic. Sci. Rep. 2020, 10, 18053. [Google Scholar] [CrossRef] [PubMed]
- Aldieri, L.; Bruno, B.; Vinci, C.P. Employment Support and COVID-19: Is Working Time Reduction the Right Tool? Economies 2022, 10, 141. [Google Scholar] [CrossRef]
- Hu, X.; Li, L.; Dong, K. What matters for regional economic resilience amid COVID-19? Evidence from cities in Northeast China. Cities 2022, 120, 103440. [Google Scholar] [CrossRef]
- Pretorius, O.R.; Drewes, J.E.; Engelbrecht, W.H.; Malan, G.C. Developing resilient supply chains in the Southern African Development Community: Lessons from the impact of COVID-19. J. Transp. Supply Chain Manag. 2022, 16, 737. [Google Scholar] [CrossRef]
- Hidayat, A.; Atiyatna, D.P.; Sari, D.D.P. The Influence of the COVID-19 Outbreak on the Open Unemployment Rate and Economic Growth in the Affected Sectors in Indonesia. Indones. J. Bus. Anal. 2023, 3, 33–40. [Google Scholar] [CrossRef]
- Renzaho, A.M.N. The need for the right socio-economic and cultural fit in the COVID-19 response in sub-Saharan Africa: Examining demographic, economic political, health, and socio-cultural differentials in COVID-19 morbidity and mortality. Int. J. Environ. Res. Public Health 2020, 17, 3445. [Google Scholar] [CrossRef]
- Kar, P.; Ramasundaram, P.; Kumar, A.; Singh, S.; Sharma, R.; Rakshit, S.; Singh, G.P. Strengthening the Multi-Stakeholder Partnerships in Wheat, Maize and Barley Value Chains: Policy Advisories for the New Normal Agriculture. Policy Pap. 2021, 2, 1–34. [Google Scholar]
- Maqbool, I.; Riaz, M.; Siddiqi, U.I.; Channa, J.A.; Shams, M.S. Social, economic and environmental implications of the COVID-19 pandemic. Front. Psychol. 2023, 13, 898396. [Google Scholar] [CrossRef]
- Omrani, H.; Valipour, M.; Mamakani, S.J. Construct a composite indicator based on integrating Common Weight Data Envelopment Analysis and principal component analysis models: An application for finding development degree of provinces in Iran. Socio-Econ. Plan. Sci. 2019, 68, 100618. [Google Scholar] [CrossRef]
- Hajiagha, S.H.R.; Mahdiraji, H.A.; Hashemi, S.S.; Garza-Reyes, J.A.; Joshi, R. Public hospitals performance measurement through a three-staged data envelopment analysis approach: Evidence from an emerging economy. Cybern. Syst. 2023, 54, 1–26. [Google Scholar] [CrossRef]
- Štefko, R.; Horváthová, J.; Mokrišová, M. The application of graphic methods and the DEA in predicting the risk of bankruptcy. J. Risk Financ. Manag. 2021, 14, 220. [Google Scholar] [CrossRef]
- GAWC. The World According to GaWC 2020. 2020. Available online: https://www.lboro.ac.uk/microsites/geography/gawc/world2020.html (accessed on 25 May 2021).
- De Oliveira, U.R.; Dias, G.C.; Fernandes, V.A. Evaluation of a conceptual model of supply chain risk management to import/export process of an automotive industry: An action research approach. Oper. Manag. Res. 2023, 16, 1–19. [Google Scholar] [CrossRef]
- Meier, M.; Pinto, E. Covid-19 supply chain disruptions. Eur. Econ. Rev. 2024, 162, 104674. [Google Scholar] [CrossRef]
- How, B.S.; Lam, H.L. PCA method for debottlenecking of sustainability performance in integrated biomass supply chain. Process Integr. Optim. Sustain. 2019, 3, 43–64. [Google Scholar] [CrossRef]
- How, B.S.; Lam, H.L. Sustainability evaluation for biomass supply chain synthesis: Novel principal component analysis (PCA) aided optimisation approach. J. Clean. Prod. 2018, 189, 941–961. [Google Scholar] [CrossRef]
- Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 417. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Peng, L.; Lian, Z. Diversification and efficiency of life insurers in China and India. Geneva Pap. Risk Insur. Issues Pract. 2021, 46, 710–730. [Google Scholar] [CrossRef]
- Nayer, M.Y.; Fazaeli, A.; Hamidi, Y. Hospital Efficiency Measurement in the West of Iran: Data Envelopment Analysis and Tobit Approach. Cost Eff. Resour. Alloc. 2022, 20, 5. [Google Scholar] [CrossRef]
- Gu, X.; Lian, Z.; Peng, L.; Zhao, Q. A comparative study of bank efficiency in three Chinese regions: Mainland China, Hong Kong, and Macao. J. Financ. Res. 2023, 46, 547–571. [Google Scholar] [CrossRef]
- Ezzat, H.M. The effect of COVID-19 on the Egyptian exchange using principal component analysis. J. Humanit. Appl. Soc. Sci. 2023, 5, 402–416. [Google Scholar] [CrossRef]
- Annisya, T.; Nurbaiti, N. Efficiency Analysis of Islamic Commercial Banks Using a Two-Stage Data Analysis Method. Tazkia Islam. Financ. Bus. Rev. 2022, 16, e295. [Google Scholar] [CrossRef]
- Mourad, N.; Habib, A.M.; Tharwat, A. Appraising healthcare systems’ efficiency in facing COVID-19 through data envelopment analysis. Decis. Sci. Lett. 2021, 10, 301–310. [Google Scholar] [CrossRef]
- Deng, F.; Xu, L.; Fang, Y.; Gong, Q.; Li, Z. PCA-DEA-tobit regression assessment with carbon emission constraints of China’s logistics industry. J. Clean. Prod. 2020, 271, 122548. [Google Scholar] [CrossRef]
- Blundell, R.; Dias, M.C. Alternative approaches to evaluation in empirical microeconomics. J. Hum. Resour. 2009, 44, 565–640. [Google Scholar]
- Garcés-Velástegui, P. Using the capability approach and fuzzy set qualitative comparative analysis in development policy evaluation. J. Comp. Policy Anal. Res. Pract. 2022, 24, 179–197. [Google Scholar] [CrossRef]
- Al Hudib, H.; Cousins, J.B. Understanding evaluation policy and organizational capacity for evaluation: An interview study. Am. J. Eval. 2022, 43, 234–254. [Google Scholar] [CrossRef]
- Walker, S.; Fox, A.; Altunkaya, J.; Colbourn, T.; Drummond, M.; Griffin, S.; Gutacker, N.; Revill, P.; Sculpher, M. Program evaluation of population-and system-level policies: Evidence for decision making. Med. Decis. Mak. 2022, 42, 17–27. [Google Scholar] [CrossRef]
- Fu, X. Digital transformation of global value chains and sustainable post-pandemic recovery. Transnatl. Corp. J. 2020, 27, 157–166. [Google Scholar] [CrossRef]
- Hassankhani, M.; Alidadi, M.; Sharifi, A.; Azhdari, A. Smart city and crisis management: Lessons for the COVID-19 pandemic. Int. J. Environ. Res. Public Health 2021, 18, 7736. [Google Scholar] [CrossRef]
Variable | Description | Mean | Std. Dev. |
---|---|---|---|
Number of policies | Number of policies implemented in each city | 24.5 | 13.08 |
Industries involved | Number of industries targeted by policies in each city | 10.2 | 4.75 |
Total capital investment | Total capital investment in policies, as a ratio of city GDP | 0.034 | 0.019 |
Individual subsidy | Individual subsidy investment, as a ratio of per capita GDP | 0.018 | 0.012 |
City/Indicator | No. of Policies | Industries Involved | Total Capital Investment | Individual Subsidy | CPI Change % | Import & Export Change % | Passenger Volume of Civil Aviation Change % | Unemployment Rate Change % | Year-on-Year GDP Change Rate |
---|---|---|---|---|---|---|---|---|---|
Amsterdam | 1 | 3 | 0 | 0.01 | 2 | 21 | 30.2 | −0.59 | 3.2 |
Auckland (NZ) | 2 | 5 | 0.02 | 0.01 | 3.3 | 27 | 747.1 | 1.9 | 1.6 |
Bangkok | 1 | 3 | 0.08 | 0 | 2.44 | 14.21 | 8.92 | 0.1 | 1.8 |
Dubai | 1 | 5 | 0.17 | 0.01 | −1.95 | 92.34 | 43 | −1.85 | 2.5 |
Guangzhou | 2 | 6 | 0.13 | 0 | 0.4 | 30.3 | 130 | 0.97 | 19.5 |
Hong Kong | 2 | 5 | 0.1 | 0.03 | 1.48 | 29.7 | 65.3 | −0.2 | 7.9 |
London | 2 | 5 | 0.06 | 0.02 | 1.5 | 20.45 | 88 | 1.6 | 5.4 |
Los Angeles | 2 | 5 | 0 | 0.05 | 3.9 | 27.23 | 70 | −1.3 | 6.3 |
Macao | 1 | 4 | 0.05 | 0.03 | 0.4 | 28.9 | 74.2 | 0.9 | 0.9 |
Milan | 2 | 5 | 0.01 | 0.03 | 1.3 | 28.1 | 53.6 | −14.6 | 4.3 |
Montreal | 2 | 6 | 0 | 0.14 | 2.7 | 17.9 | 43.8 | −0.9 | 3 |
New York | 2 | 5 | 0 | 0.06 | 4.7 | 28.9 | 60 | −0.3 | 5.7 |
Paris | 2 | 5 | 0.16 | 0.03 | 1.492 | 18.9 | 76.9 | −2 | 0.4 |
San Francisco | 2 | 5 | 0 | 0.03 | 1.7 | 11.04 | 70 | −7.7 | 6.6 |
Seoul | 2 | 4 | 0.01 | 0.01 | 1.8 | 21.2 | 31.3 | 0.66 | 1.6 |
Shenzhen | 1 | 6 | 0.14 | 0 | −1.5 | 34.5 | 141.74 | −0.25 | 17.1 |
Singapore | 2 | 4 | 0.19 | 0.01 | 2.912 | 25.3 | 24 | −0.7 | 0.2 |
Sydney | 2 | 4 | 0.07 | 0.01 | −1 | 11 | 178 | −1 | 1.8 |
Tokyo | 1 | 5 | 0.01 | 0.02 | 0.079 | 51.3 | 16 | −0.2 | 2.3 |
Toronto | 2 | 6 | 0.18 | 0.08 | 0.4 | 66.7 | 80.7 | −1.3 | 5.6 |
No. | City/Indicator | No. of Policies | Industries Involved | Total Capital Investment | Individual Subsidy | Efficiency |
---|---|---|---|---|---|---|
1 | Sydney | 2 | 4 | 0.07 | 0.01 | 1.000 |
2 | Toronto | 2 | 6 | 0.18 | 0.08 | 1.000 |
3 | Milan | 2 | 5 | 0.01 | 0.03 | 1.000 |
4 | Auckland (NZ) | 2 | 5 | 0.02 | 0.01 | 1.000 |
5 | Dubai | 1 | 5 | 0.17 | 0.01 | 1.000 |
6 | Singapore | 2 | 4 | 0.19 | 0.01 | 0.910 |
7 | Montreal | 2 | 6 | 0 | 0.14 | 0.909 |
8 | Shenzhen | 1 | 6 | 0.14 | 0 | 0.905 |
9 | Paris | 2 | 5 | 0.16 | 0.03 | 0.902 |
10 | Seoul | 2 | 4 | 0.01 | 0.01 | 0.884 |
11 | Guangzhou | 2 | 6 | 0.13 | 0 | 0.812 |
12 | Hong Kong | 2 | 5 | 0.1 | 0.03 | 0.746 |
13 | San Francisco | 2 | 5 | 0 | 0.03 | 0.705 |
14 | London | 2 | 5 | 0.06 | 0.02 | 0.705 |
15 | Los Angeles | 2 | 5 | 0 | 0.05 | 0.556 |
16 | New York | 2 | 5 | 0 | 0.06 | 0.524 |
17 | Bangkok | 1 | 3 | 0.08 | 0 | 0.401 |
18 | Tokyo | 1 | 5 | 0.01 | 0.02 | 0.375 |
19 | Amsterdam | 1 | 3 | 0 | 0.01 | 0.366 |
20 | Macao | 1 | 4 | 0.05 | 0.03 | 0.266 |
No. | City/Indicator | No. of Policies | Industries Involved | Total Capital Investment | Individual Subsidy | Efficiency | Value A | Value B |
---|---|---|---|---|---|---|---|---|
1 | Sydney | 2 | 4 | 0.07 | 0.01 | 1.000 | 9 | 0.8323 |
2 | Toronto | 2 | 6 | 0.18 | 0.08 | 1.000 | ||
3 | Milan | 2 | 5 | 0.01 | 0.03 | 1.000 | ||
4 | Auckland (NZ) | 2 | 5 | 0.02 | 0.01 | 1.000 | ||
5 | Singapore | 2 | 4 | 0.19 | 0.01 | 0.910 | ||
6 | Montreal | 2 | 6 | 0 | 0.14 | 0.909 | ||
7 | Paris | 2 | 5 | 0.16 | 0.03 | 0.902 | ||
8 | Seoul | 2 | 4 | 0.01 | 0.01 | 0.884 | ||
9 | Guangzhou | 2 | 6 | 0.13 | 0 | 0.812 | ||
10 | Hong Kong | 2 | 5 | 0.1 | 0.03 | 0.746 | ||
11 | San Francisco | 2 | 5 | 0 | 0.03 | 0.705 | ||
12 | London | 2 | 5 | 0.06 | 0.02 | 0.705 | ||
13 | Los Angeles | 2 | 5 | 0 | 0.05 | 0.556 | ||
14 | New York | 2 | 5 | 0 | 0.06 | 0.524 | ||
15 | Dubai | 1 | 5 | 0.17 | 0.01 | 1.000 | 14 | 0.5522 |
16 | Shenzhen | 1 | 6 | 0.14 | 0 | 0.905 | ||
17 | Bangkok | 1 | 3 | 0.08 | 0 | 0.401 | ||
18 | Tokyo | 1 | 5 | 0.01 | 0.02 | 0.375 | ||
19 | Amsterdam | 1 | 3 | 0 | 0.01 | 0.366 | ||
20 | Macao | 1 | 4 | 0.05 | 0.03 | 0.266 |
No. | City/Indicator | No. of Policies | Industries Involved | Total Capital Investment | Individual Subsidy | Efficiency | Rank | Value C | Value D |
---|---|---|---|---|---|---|---|---|---|
1 | Toronto | 2 | 6 | 0.18 | 0.08 | 1.000 | 7 | 7.25 | 0.9065 |
2 | Montreal | 2 | 6 | 0 | 0.14 | 0.909 | 1 | ||
3 | Guangzhou | 2 | 6 | 0.13 | 0 | 0.812 | 8 | ||
4 | Shenzhen | 1 | 6 | 0.14 | 0 | 0.905 | 11 | ||
5 | Milan | 2 | 5 | 0.01 | 0.03 | 1.000 | 16 | 10.8 | 0.7513 |
6 | Auckland (NZ) | 2 | 5 | 0.02 | 0.01 | 1.000 | 15 | ||
7 | Paris | 2 | 5 | 0.16 | 0.03 | 0.902 | 2 | ||
8 | Hong Kong | 2 | 5 | 0.1 | 0.03 | 0.746 | 9 | ||
9 | San Francisco | 2 | 5 | 0 | 0.03 | 0.705 | 12 | ||
10 | London | 2 | 5 | 0.06 | 0.02 | 0.705 | 13 | ||
11 | Los Angeles | 2 | 5 | 0 | 0.05 | 0.556 | 14 | ||
12 | New York | 2 | 5 | 0 | 0.06 | 0.524 | 18 | ||
13 | Dubai | 1 | 5 | 0.17 | 0.01 | 1.000 | 3 | ||
14 | Tokyo | 1 | 5 | 0.01 | 0.02 | 0.375 | 5 | ||
15 | Sydney | 2 | 4 | 0.07 | 0.01 | 1.000 | 20 | 9.25 | 0.765 |
16 | Singapore | 2 | 4 | 0.19 | 0.01 | 0.910 | 4 | ||
17 | Seoul | 2 | 4 | 0.01 | 0.01 | 0.884 | 6 | ||
18 | Macao | 1 | 4 | 0.05 | 0.03 | 0.266 | 10 | ||
19 | Bangkok | 1 | 3 | 0.08 | 0 | 0.401 | 19 | 18 | 0.3835 |
20 | Amsterdam | 1 | 3 | 0 | 0.01 | 0.366 | 17 |
No. | City/Indicator | No. of Policies | Industries Involved | Total Capital Investment | Individual Subsidy | Efficiency | Rank |
---|---|---|---|---|---|---|---|
1 | Singapore | 2 | 4 | 0.19 | 0.01 | 0.910 | 6 |
2 | Toronto | 2 | 6 | 0.18 | 0.08 | 1.000 | 3 |
3 | Dubai | 1 | 5 | 0.17 | 0.01 | 1.000 | 2 |
4 | Paris | 2 | 5 | 0.16 | 0.03 | 0.902 | 9 |
5 | Shenzhen | 1 | 6 | 0.14 | 0 | 0.905 | 8 |
6 | Guangzhou | 2 | 6 | 0.13 | 0 | 0.812 | 11 |
7 | Hong Kong | 2 | 5 | 0.1 | 0.03 | 0.746 | 12 |
8 | Bangkok | 1 | 3 | 0.08 | 0 | 0.401 | 17 |
9 | Sydney | 2 | 4 | 0.07 | 0.01 | 1.000 | 1 |
10 | London | 2 | 5 | 0.06 | 0.02 | 0.705 | 14 |
11 | Macao | 1 | 4 | 0.05 | 0.03 | 0.266 | 20 |
12 | Auckland (NZ) | 2 | 5 | 0.02 | 0.01 | 1.000 | 5 |
13 | Milan | 2 | 5 | 0.01 | 0.03 | 1.000 | 4 |
14 | Tokyo | 1 | 5 | 0.01 | 0.02 | 0.375 | 18 |
15 | Seoul | 2 | 4 | 0.01 | 0.01 | 0.884 | 10 |
16 | Montreal | 2 | 6 | 0 | 0.14 | 0.909 | 7 |
17 | San Francisco | 2 | 5 | 0 | 0.03 | 0.705 | 13 |
18 | Los Angeles | 2 | 5 | 0 | 0.05 | 0.556 | 15 |
19 | New York | 2 | 5 | 0 | 0.06 | 0.524 | 16 |
20 | Amsterdam | 1 | 3 | 0 | 0.01 | 0.366 | 19 |
City/Indicator | No. of Policies | Industries Involved | Total Capital Investment | Individual Subsidy | Efficiency | Rank |
---|---|---|---|---|---|---|
Milan | 2 | 5 | 0.01 | 0.03 | 1.000 | 1 |
Montreal | 2 | 6 | 0 | 0.14 | 0.909 | 7 |
Seoul | 2 | 4 | 0.01 | 0.01 | 0.884 | 10 |
San Francisco | 2 | 5 | 0 | 0.03 | 0.705 | 13 |
Los Angeles | 2 | 5 | 0 | 0.05 | 0.556 | 15 |
New York | 2 | 5 | 0 | 0.06 | 0.524 | 16 |
Tokyo | 1 | 5 | 0.01 | 0.02 | 0.375 | 18 |
Amsterdam | 1 | 3 | 0 | 0.01 | 0.366 | 19 |
No. | City/Indicator | No. of Policies | Industries Involved | Total Capital Investment | Individual Subsidy | Efficiency | Rank |
---|---|---|---|---|---|---|---|
1 | Montreal | 2 | 6 | 0 | 0.14 | 0.909 | 7 |
2 | Toronto | 2 | 6 | 0.18 | 0.08 | 1.000 | 1 |
3 | New York | 2 | 5 | 0 | 0.06 | 0.524 | 16 |
4 | Los Angeles | 2 | 5 | 0 | 0.05 | 0.556 | 15 |
5 | Milan | 2 | 5 | 0.01 | 0.03 | 1.000 | 1 |
6 | Paris | 2 | 5 | 0.16 | 0.03 | 0.902 | 9 |
7 | Hong Kong | 2 | 5 | 0.1 | 0.03 | 0.746 | 12 |
8 | San Francisco | 2 | 5 | 0 | 0.03 | 0.705 | 13 |
9 | Macao | 1 | 4 | 0.05 | 0.03 | 0.266 | 20 |
10 | London | 2 | 5 | 0.06 | 0.02 | 0.705 | 14 |
11 | Tokyo | 1 | 5 | 0.01 | 0.02 | 0.375 | 18 |
12 | Dubai | 1 | 5 | 0.17 | 0.01 | 1.000 | 1 |
13 | Sydney | 2 | 4 | 0.07 | 0.01 | 1.000 | 1 |
14 | Auckland (NZ) | 2 | 5 | 0.02 | 0.01 | 1.000 | 1 |
15 | Singapore | 2 | 4 | 0.19 | 0.01 | 0.910 | 6 |
16 | Seoul | 2 | 4 | 0.01 | 0.01 | 0.884 | 10 |
17 | Amsterdam | 1 | 3 | 0 | 0.01 | 0.366 | 19 |
18 | Shenzhen | 1 | 6 | 0.14 | 0 | 0.905 | 8 |
19 | Guangzhou | 2 | 6 | 0.13 | 0 | 0.812 | 11 |
20 | Bangkok | 1 | 3 | 0.08 | 0 | 0.401 | 17 |
City/Indicator | No. of Policies | Industries Involved | Total Capital Investment | Individual Subsidy | Crste | C-Rank | Vrste | V-Rank | Scale | S-Rank | Returns to Scale |
---|---|---|---|---|---|---|---|---|---|---|---|
Sydney | 2 | 4 | 0.07 | 0.01 | 1.000 | 1 | 1.000 | 1 | 1.000 | 1 | - |
Dubai | 1 | 5 | 0.17 | 0.01 | 1.000 | 1 | 1.000 | 1 | 1.000 | 1 | - |
Toronto | 2 | 6 | 0.18 | 0.08 | 1.000 | 1 | 1.000 | 1 | 1.000 | 1 | - |
Milan | 2 | 5 | 0.01 | 0.03 | 1.000 | 1 | 1.000 | 1 | 1.000 | 1 | - |
Auckland (NZ) | 2 | 5 | 0.02 | 0.01 | 1.000 | 1 | 1.000 | 1 | 1.000 | 1 | - |
Singapore | 2 | 4 | 0.19 | 0.01 | 0.910 | 6 | 1.000 | 1 | 0.910 | 11 | - |
Montreal | 2 | 6 | 0 | 0.14 | 0.909 | 7 | 1.000 | 1 | 0.909 | 12 | drs 1 |
Shenzhen | 1 | 6 | 0.14 | 0 | 0.905 | 8 | 1.000 | 1 | 0.905 | 13 | drs |
Paris | 2 | 5 | 0.16 | 0.03 | 0.902 | 9 | 1.000 | 1 | 0.902 | 14 | drs |
Guangzhou | 2 | 6 | 0.13 | 0 | 0.812 | 11 | 1.000 | 1 | 0.812 | 17 | drs |
Seoul | 2 | 4 | 0.01 | 0.01 | 0.884 | 10 | 0.930 | 11 | 0.951 | 9 | drs |
Hong Kong | 2 | 5 | 0.1 | 0.03 | 0.746 | 12 | 0.837 | 12 | 0.891 | 15 | drs |
London | 2 | 5 | 0.06 | 0.02 | 0.705 | 14 | 0.773 | 13 | 0.911 | 10 | drs |
San Francisco | 2 | 5 | 0 | 0.03 | 0.705 | 13 | 0.735 | 14 | 0.960 | 8 | drs |
Los Angeles | 2 | 5 | 0 | 0.05 | 0.556 | 15 | 0.572 | 16 | 0.971 | 7 | irs 2 |
New York | 2 | 5 | 0 | 0.06 | 0.524 | 16 | 0.524 | 17 | 0.999 | 6 | drs |
Bangkok | 1 | 3 | 0.08 | 0 | 0.401 | 17 | 0.473 | 20 | 0.849 | 16 | irs |
Tokyo | 1 | 5 | 0.01 | 0.02 | 0.375 | 18 | 0.632 | 15 | 0.593 | 19 | drs |
Amsterdam | 1 | 3 | 0 | 0.01 | 0.366 | 19 | 0.498 | 19 | 0.735 | 18 | irs |
Macao | 1 | 4 | 0.05 | 0.03 | 0.266 | 20 | 0.512 | 18 | 0.518 | 20 | irs |
No. | City/Indicator | No. of Policies | Industries Involved | Total Capital Investment | Individual Subsidy | Crste | Vrste | Scale | Returns to Scale | Classes of Cities |
---|---|---|---|---|---|---|---|---|---|---|
14 | Dubai | 1 | 5 | 0.17 | 0.01 | 1.000 | 1.000 | 1.000 | drs 1 | Trade, Travel |
11 | Sydney | 2 | 4 | 0.07 | 0.01 | 1.000 | 1.000 | 1.000 | drs | Synthesis |
13 | Bangkok | 1 | 3 | 0.08 | 0 | 0.401 | 0.473 | 0.849 | drs | Travel |
5 | Tokyo | 1 | 5 | 0.01 | 0.02 | 0.375 | 0.632 | 0.593 | irs 2 | Synthesis |
18 | Amsterdam | 1 | 3 | 0 | 0.01 | 0.366 | 0.498 | 0.735 | irs | Travel |
4 | Macao | 1 | 4 | 0.05 | 0.03 | 0.266 | 0.512 | 0.518 | irs | Travel |
City/Indicator | No. of Policies | Industries Involved | Total Capital Investment | Individual Subsidy | Crste | C-Rank | Vrste | V-Rank | Scale | S-Rank | Returns to Scale |
---|---|---|---|---|---|---|---|---|---|---|---|
Montreal | 2 | 6 | 0 | 0.14 | 0.909 | 7 | 1 | 1 | 0.909 | 12 | drs 1 |
Shenzhen | 1 | 6 | 0.14 | 0 | 0.905 | 8 | 1 | 1 | 0.905 | 13 | drs |
Paris | 2 | 5 | 0.16 | 0.03 | 0.902 | 9 | 1 | 1 | 0.902 | 14 | drs |
Guangzhou | 2 | 6 | 0.13 | 0 | 0.812 | 11 | 1 | 1 | 0.812 | 17 | drs |
Seoul | 2 | 4 | 0.01 | 0.01 | 0.884 | 10 | 0.93 | 11 | 0.951 | 9 | drs |
Hong Kong | 2 | 5 | 0.1 | 0.03 | 0.746 | 12 | 0.837 | 12 | 0.891 | 15 | drs |
London | 2 | 5 | 0.06 | 0.02 | 0.705 | 14 | 0.773 | 13 | 0.911 | 10 | drs |
San Francisco | 2 | 5 | 0 | 0.03 | 0.705 | 13 | 0.735 | 14 | 0.96 | 8 | drs |
Tokyo | 1 | 5 | 0.01 | 0.02 | 0.375 | 18 | 0.632 | 15 | 0.593 | 19 | drs |
New York | 2 | 5 | 0 | 0.06 | 0.524 | 16 | 0.524 | 17 | 0.999 | 6 | drs |
City/Indicator | No. of Policies | Industries Involved | Total Capital Investment | Individual Subsidy | Crste | C-Rank | Vrste | V-Rank | Scale | S-Rank | Returns to Scale |
---|---|---|---|---|---|---|---|---|---|---|---|
Los Angeles | 2 | 5 | 0 | 0.05 | 0.556 | 15 | 0.572 | 16 | 0.971 | 7 | irs |
Macao | 1 | 4 | 0.05 | 0.03 | 0.266 | 20 | 0.512 | 18 | 0.518 | 20 | irs |
Amsterdam | 1 | 3 | 0 | 0.01 | 0.366 | 19 | 0.498 | 19 | 0.735 | 18 | irs |
Bangkok | 1 | 3 | 0.08 | 0 | 0.401 | 17 | 0.473 | 20 | 0.849 | 16 | irs |
eff | Coef. | St. Err. | T Value | p-Value | 95% Conf. Interval | Sig | ||
---|---|---|---|---|---|---|---|---|
Number of policies | 0.196 | 0.069 | 2.84 | 0.005 | 0.061–0.331 | *** | ||
Industry categories | 0.011 | 0.04 | 0.28 | 0.78 | −0.068–0.09 | |||
Total Investment tot | 0.357 | 0.484 | 0.74 | 0.461 | −0.591–1.305 | |||
Subsidies per capita | −0.257 | 1.106 | −0.23 | 0.817 | −2.424–1.911 | |||
Constant-1 | 0.508 | 0.18 | 2.81 | 0.005 | 0.154–0.861 | *** | ||
Constant-2 | 0 | 37.28 | 0.00 | 1 | 73.068 | |||
Constant-3 | 0.125 | 0.024 | 5.23 | 0 | 0.172 | *** | ||
Mean dependent var | 0.891 | SD dependent var | 0.135 | |||||
Number of obs. | 20 | Chi-square | 10.666 | |||||
Prob > chi2 | 0.031 | Akaike crit. (AIC) | 2.966 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Fu, G.; Zhao, X. Urban Economic Resilience and Supply Chain Dynamics: Evaluating Monetary Recovery Policies in Global Cities during the Early COVID-19 Pandemic. Mathematics 2024, 12, 673. https://doi.org/10.3390/math12050673
Li J, Fu G, Zhao X. Urban Economic Resilience and Supply Chain Dynamics: Evaluating Monetary Recovery Policies in Global Cities during the Early COVID-19 Pandemic. Mathematics. 2024; 12(5):673. https://doi.org/10.3390/math12050673
Chicago/Turabian StyleLi, Jin, Guie Fu, and Xichen Zhao. 2024. "Urban Economic Resilience and Supply Chain Dynamics: Evaluating Monetary Recovery Policies in Global Cities during the Early COVID-19 Pandemic" Mathematics 12, no. 5: 673. https://doi.org/10.3390/math12050673
APA StyleLi, J., Fu, G., & Zhao, X. (2024). Urban Economic Resilience and Supply Chain Dynamics: Evaluating Monetary Recovery Policies in Global Cities during the Early COVID-19 Pandemic. Mathematics, 12(5), 673. https://doi.org/10.3390/math12050673