Calculating Insurance Claim Reserves with an Intuitionistic Fuzzy Chain-Ladder Method
Abstract
:1. Introduction
2. Intuitionistic Fuzzy Numbers
2.1. Fuzzy Numbers and Intuitionistic Fuzzy Numbers
- i.
- is normal, i.e., ;
- ii.
- is convex, i.e.,
- i.
- is normal, i.e., ;
- ii.
- is convex, ;
- iii.
- is concave,
2.2. Intuitionistic Fuzzy Number Arithmetic
2.3. Intuitionistic Linear Regression with the Minimum Fuzziness Principle and Symmetric Coefficients
- Alternative 1. The values of and are those that are solved in a unique step (34). In this case, the centers are those that are obtained in a quantile regression at the median, identical to [71].
- Alternative 2. The value in the first step is obtained by using ordinary least squares [72]. However, there is no reason why any other method, such as the maximum likelihood or weighted least-squares methods, cannot be used. In the second step, is obtained by solving (34) and taking into account that this linear programming problem is as follows, after independently stating :
3. An Intuitionistic Chain Ladder for Claim Reserving
3.1. Claim Reserving with the Chain-Ladder Method and Stochastic Variability and a Probability–Possibility Transformation
- Obtain the estimates of the observations , , i = 0, 1, …, n; j < n − i by using backwards from .
- Calculate an estimate of observed incremental claims (Table 2) by stating , in the case of
- Calculate the descaled Pearson residuals due to fitting the real incremental claims in Table 2, , with :
- Resample , i = 0, 1, …, n; . Therefore, we find i = 0, 1, …, n; .
- From Table 3, in the above step, we can resample the accumulated claims and construct Table 2. This new table allows us to obtain the development factors (40) and reserves (44) and (45). These six steps can be implemented B times in such a way that predictions of claiming reserves can be obtained as confidence intervals.
3.2. An Intuitionistic Fuzzy Chain-Ladder Method
3.2.1. Fitting Symmetrical Intuitionistic Triangular Fuzzy Development Factors
- i.
- Considering that
- ii.
- is obtained by calculating in Step 4 of Section 2.3 with (36) and (37).
- iii.
- Finally, is adjusted in Step 5 of Section 2.3 by subjectively stating the degree of system hesitancy, , and using (38).
3.2.2. Fitting Reserves with Symmetric Triangular Intuitionistic Fuzzy Development Factors
4. Empirical Application
4.1. Estimating Loss Reserves with Deterministic and Stochastic Chain-Ladder Method
4.2. Estimating Loss Reserves with a Symmetric Triangular Intuitionistic Fuzzy Chain Ladder
5. Conclusions and Further Research
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hindley, D. Introduction. In Claims Reserving in General Insurance. International Series on Actuarial Science; Hindley, D., Ed.; Cambridge University Press: Cambridge, UK, 2017; pp. 1–15. [Google Scholar]
- Hindley, D. Stochastic Reserving Methods. In Claims Reserving in General Insurance. International Series on Actuarial Science; Hindley, D., Ed.; Cambridge University Press: Cambridge, UK, 2017; pp. 146–319. [Google Scholar]
- Andrés Sánchez, J. Calculating insurance claim reserves with fuzzy regression. Fuzzy Sets Syst. 2006, 157, 3091–3108. [Google Scholar] [CrossRef]
- Bastos, I.S.; Vana, L.B.; Novo, C.C. Estimating IBNR claim reserves using Gaussian Fuzzy Numbers. Context. Rev. Cont. Econ. Gest. 2023, 21, e83343. [Google Scholar] [CrossRef]
- Shapiro, A.F. Fuzzy logic in insurance. Insur. Math. Econ. 2004, 35, 399–424. [Google Scholar] [CrossRef]
- Derrig, R.A.; Ostaszewski, K.M. Fuzzy Set Theory. In Encyclopedia of Actuarial Science; Teugels, J.F., Sundt, B., Asmussen, S., Eds.; John Willey and Sons Ltd.: Chichester, NH, USA, 2006. [Google Scholar]
- Dubois, D.; Prade, H. The three semantics of fuzzy sets. Fuzzy Sets Syst. 1997, 90, 141–150. [Google Scholar] [CrossRef]
- Hindley, D. Data. In Claims Reserving in General Insurance. International Series on Actuarial Science; Hindley, D., Ed.; Cambridge University Press: Cambridge, UK, 2017; pp. 16–39. [Google Scholar]
- Straub, E. Nonlife Insurance Mathematics; Springer: Berlin/Heidelberg, Germany, 1997; pp. 102–115. [Google Scholar]
- Schmidt, K.D.; Zocher, M. Additive Method. In Handbook on Loss Reserving. EAA Series; Radtke, M., Schmidt, K.D., Schnaus, A., Eds.; Springer: Cologne, Germany, 2016. [Google Scholar]
- Mack, T. Distribution-free Calculation of the Standard Error of Chain Ladder Reserve Estimates. Astin Bullet. 1993, 23, 213–225. [Google Scholar] [CrossRef]
- England, P.D.; Verrall, R. Analytic and bootstrap estimates of prediction errors in claims reserving. Insur. Math. Econ. 1999, 25, 281–293. [Google Scholar] [CrossRef]
- Andrés-Sanchez, J.; Gómez, A.T. Applications of fuzzy regression in actuarial analysis. J. Risk Insur. 2003, 70, 665–699. [Google Scholar] [CrossRef]
- Heberle, J.; Thomas, A. Combining chain-ladder claims reserving with fuzzy numbers. Insur. Math. Econ. 2014, 55, 96–104. [Google Scholar] [CrossRef]
- Heberle, J.; Thomas, A. The fuzzy Bornhuetter–Ferguson method: An approach with fuzzy numbers. Ann. Actuar. Sci. 2016, 10, 303–321. [Google Scholar] [CrossRef]
- Taylor, G.C. Separation of inflation and other effects from the distribution of nonlife insurance claim delays. Astin Bullet. 1977, 10, 219–230. [Google Scholar] [CrossRef]
- Kremer, E. IBNR-claims and the two-way model of ANOVA. Scand. Actuar. J. 1982, 1, 47–55. [Google Scholar] [CrossRef]
- Yan, C.; Liu, T.; Dong, Q.; Liu, W. Payments Per Claim Method Based on Fuzzy Numbers. In Proceedings of the 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Huangshan, China, 28–30 July 2018; pp. 643–648. [Google Scholar]
- Kim, J.H.; Kim, J. Fuzzy regression towards a general insurance application. J. Appl. Math. Inform. 2014, 32, 343–357. [Google Scholar] [CrossRef]
- Woundjiagué, A.; Mbele Bidima, M.L.D.; Waweru Mwangi, R. An Estimation of a Hybrid Log-Poisson Regression Using a Quadratic Optimization Program for Optimal Loss Reserving in Insurance. Adv. Fuzzy Syst. 2019, 1393946. [Google Scholar] [CrossRef]
- Apaydin, A.; Baser, F. Hybrid fuzzy least-squares regression analysis in claims reserving with geometric separation method. Insur. Math. Econ. 2010, 47, 113–122. [Google Scholar] [CrossRef]
- Woundjiagué, A.; Mbele Bidima, M.L.D.; Waweru Mwangi, R. A fuzzy least-squares estimation of a hybrid log-Poisson regression and its goodness of fit for optimal loss reserves in insurance. Int. J. Fuzzy Syst. 2019, 21, 930–944. [Google Scholar]
- Andrés-Sánchez, J. Claim reserving with fuzzy regression and Taylor’s geometric separation method. Insur. Math. Econ. 2007, 40, 145–163. [Google Scholar] [CrossRef]
- Yan, C.; Liu, Q.; Liu, J.; Liu, W.; Li, M.; Qi, M. Payments per claim model of outstanding claims reserve based on fuzzy linear regression. Int. J. Fuzzy Syst. 2019, 21, 1950–1960. [Google Scholar] [CrossRef]
- Andrés-Sánchez, J. Claim reserving with fuzzy regression and the two ways of ANOVA. Appl. Soft Comput. 2012, 12, 2435–2441. [Google Scholar] [CrossRef]
- Baser, F.; Apaydin, A. Calculating insurance claim reserves with hybrid fuzzy least squares regression analysis. Gazi Univ. J. Sci. 2010, 23, 163–170. [Google Scholar]
- Dubois, D.; Prade, H. An overview of the asymmetric bipolar representation of positive and negative information in possibility theory. Fuzzy Sets Syst. 2009, 160, 1355–1366. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H. Gradualness, uncertainty and bipolarity: Making sense of fuzzy sets. Fuzzy Sets Syst. 2012, 192, 3–24. [Google Scholar] [CrossRef]
- Mitchell, H.B. Ranking-intuitionistic fuzzy numbers. Int. J. Uncertain. Fuzziness Knowl.-Based Syst 2004, 12, 377–386. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Atanassov, K.T. More on intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989, 33, 37–45. [Google Scholar] [CrossRef]
- Kumar, G.; Bajaj, R.K. Implementation of intuitionistic fuzzy approach in maximizing net present value. Int. J. Math. Comput. Sci. 2014, 8, 1069–1073. [Google Scholar]
- Kahraman, C.; Çevik Onar, S.; Öztayşi, B. Engineering economic analyses using intuitionistic and hesitant fuzzy sets. J. Intell. Fuzzy Syst. 2015, 29, 1151–1168. [Google Scholar] [CrossRef]
- Boltürk, E.; Kahraman, C. Interval-valued and circular intuitionistic fuzzy present worth analyses. Informatica 2022, 33, 693–711. [Google Scholar] [CrossRef]
- Haktanır, E.; Kahraman, C. Intuitionistic fuzzy risk adjusted discount rate and certainty equivalent methods for risky projects. Int. J. Prod. Econ. 2023, 257, 108757. [Google Scholar] [CrossRef]
- Wu, L.; Liu, J.F.; Wang, J.T.; Zhuang, Y.M. Pricing for a basket of LCDS under fuzzy environments. SpringerPlus 2016, 5, 1–12. [Google Scholar] [CrossRef]
- Ersen, H.Y.; Tas, O.; Kahraman, C. Intuitionistic fuzzy real-options theory and its application to solar energy investment projects. Eng. Econ. 2018, 29, 140–150. [Google Scholar] [CrossRef]
- Ersen, H.Y.; Tas, O.; Ugurlu, U. Solar energy investment valuation with intuitionistic fuzzy trinomial lattice real option model. IEEE Trans. Eng. Manag. 2023, 70, 2584–2593. [Google Scholar] [CrossRef]
- Puri, J.; Yadav, S.P. Intuitionistic fuzzy data envelopment analysis: An application to the banking sector in India. Expert Syst. Appl. 2015, 42, 4982–4998. [Google Scholar] [CrossRef]
- Arya, A.; Yadav, S.P. Development of intuitionistic fuzzy data envelopment analysis models and intuitionistic fuzzy input–output targets. Soft Comp. 2019, 23, 8975–8993. [Google Scholar] [CrossRef]
- Davoudabadi, R.; Mousavi, S.M.; Mohagheghi, V. A new decision model based on DEA and simulation to evaluate renewable energy projects under interval-valued intuitionistic fuzzy uncertainty. Renew. Energ. 2021, 164, 1588–1601. [Google Scholar] [CrossRef]
- Uzhga-Rebrov, O.; Grabusts, P. Methodology for Environmental Risk Analysis Based on Intuitionistic Fuzzy Values. Risks 2023, 11, 88. [Google Scholar] [CrossRef]
- Andrés-Sánchez, J. Pricing Life Contingencies Linked to Impaired Life Expectancies Using Intuitionistic Fuzzy Parameters. Risks 2024, 12, 29. [Google Scholar] [CrossRef]
- Koissi, M.C.; Shapiro, A.F. Fuzzy formulation of the Lee–Carter model for mortality forecasting. Insur. Math. Econ. 2006, 39, 287–309. [Google Scholar] [CrossRef]
- Szymański, A.; Rossa, A. The modified fuzzy mortality model based on the algebra of ordered fuzzy numbers. Biom. J. 2021, 63, 671–689. [Google Scholar] [CrossRef]
- Parvathi, R.; Malathi, C.; Akram, M.; Atanassov, K. Intuitionistic fuzzy linear regression analysis. Fuzzy Optim Decis Making 2013, 12, 215–229. [Google Scholar] [CrossRef]
- Tanaka, H.; Ishibuchi, H. A possibilistic regression analysis based on linear programming. In Fuzzy Regression Analysis; Kacprzuk, J., Fedrizzi, M., Eds.; Physica-Verlag: Heildelberg, Germany, 1992; pp. 47–60. [Google Scholar]
- Lee, H.; Tanaka, H. Upper and lower approximation models in interval regression using regression quantile techniques. Eur. J. Oper. Res. 1999, 116, 653–666. [Google Scholar] [CrossRef]
- Savic, D.; Predrycz, W. Fuzzy linear models: Construction and evaluation. In Fuzzy Regression Analysis; Kacprzuk, J., Fedrizzi, M., Eds.; Physica-Verlag: Heildelberg, Germany, 1992; pp. 91–100. [Google Scholar]
- Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H. Fuzzy numbers: An overview. Read. Fuzzy Sets Intell. Syst. 1993, 112–148. [Google Scholar]
- Kreinovich, V.; Kosheleva, O.; Shahbazova, S.N. Why Triangular and Trapezoid Membership Functions: A Simple Explanation. In Recent Developments in Fuzzy Logic and Fuzzy Sets. Studies in Fuzziness and Soft Computing; Shahbazova, S., Sugeno, M., Kacprzyk, J., Eds.; Springer: Cologne, Germany, 2020; Volume 391, pp. 25–51. [Google Scholar]
- Mauris, G.; Lasserre, V.; Foulloy, L. A fuzzy approach for the expression of uncertainty in measurement. Measurement 2001, 29, 165–177. [Google Scholar] [CrossRef]
- Dubois, D.; Folloy, L.; Mauris, G.; Prade, H. Probability–possibility transformations, triangular fuzzy sets, and probabilistic inequalities. Reliab. Comput. 2004, 10, 273–297. [Google Scholar] [CrossRef]
- Andrés-Sánchez, J.; Gonzalez-Vila, L.G.V. The valuation of life contingencies: A symmetrical triangular fuzzy approximation. Insur. Math. Econ. 2017, 72, 83–94. [Google Scholar] [CrossRef]
- Mauris, G. Possibility distributions: A unified representation of usual direct-probability-based parameter estimation methods. Int. J. Approx. Reason. 2011, 52, 1232–1242. [Google Scholar] [CrossRef]
- Couso, I.; Montes, S.; Gil, P. The necessity of the strong α-cuts of a fuzzy set. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2001, 9, 249–262. [Google Scholar] [CrossRef]
- Buckley, J.J. Fuzzy statistics: Regression and prediction. Soft Comput. 2005, 9, 769–775. [Google Scholar] [CrossRef]
- Sfiris, D.S.; Papadopoulos, B.K. Non-asymptotic fuzzy estimators based on confidence intervals. Inf. Sci. 2014, 279, 446–459. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H. Practical methods for constructing possibility distributions. Inte. J. Intell. Syst. 2016, 31, 215–239. [Google Scholar] [CrossRef]
- Adjenughwure, K.; Papadopoulos, B. Fuzzy-statistical prediction intervals from crisp regression models. Evolv. Syst. 2020, 11, 201–213. [Google Scholar] [CrossRef]
- Yuan, X.H.; Li, H.X.; Zhang, C. The theory of intuitionistic fuzzy sets based on the intuitionistic fuzzy special sets. Inf. Sci. 2014, 277, 284–298. [Google Scholar] [CrossRef]
- Kumar, P.S.; Hussain, R.J. A method for solving unbalanced intuitionistic fuzzy transportation problems. Notes Intuition. Fuzzy Sets 2015, 21, 54–65. [Google Scholar]
- Mukherjee, A.K.; Gazi, K.H.; Salahshour, S.; Ghosh, A.; Mondal, S.P. A brief analysis and interpretation on arithmetic operations of fuzzy numbers. Res. Contr. Optim. 2023, 13, 100312. [Google Scholar] [CrossRef]
- Bayeg, S.; Mert, R. On intuitionistic fuzzy version of Zadeh’s extension principle. Notes Intuition. Fuzzy Sets 2021, 27, 9–17. [Google Scholar] [CrossRef]
- Buckley, J.J.; Qu, Y. On using α-cuts to evaluate fuzzy equations. Fuzzy Sets Syst. 1990, 38, 309–312. [Google Scholar] [CrossRef]
- Grzegorzewski, P.; Pasternak-Winiarska, K. Natural trapezoidal approximations of fuzzy numbers. Fuzzy Sets Syst. 2014, 250, 90–109. [Google Scholar] [CrossRef]
- Andrés-Sánchez, J.; González-Vila Puchades, L. Life settlement pricing with fuzzy parameters. Appl. Soft Comput. 2023, 148, 110924. [Google Scholar] [CrossRef]
- Chukhrova, N.; Johannssen, A. Fuzzy regression analysis: Systematic review and bibliography. Appl. Soft Comput. 2019, 84, 105708. [Google Scholar] [CrossRef]
- Arefi, M.; Taheri, S.M. Least-Squares Regression Based on Atanassov’s Intuitionistic Fuzzy Inputs–Outputs and Atanassov’s Intuitionistic Fuzzy Parameters. IEEE Trans. Fuzzy. Syst. 2014, 23, 1142–1154. [Google Scholar] [CrossRef]
- Koenker, R.; Bassett Jr, G. Regression quantiles. Econometrica 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Ishibuchi, H.; Nii, M. Fuzzy regression using asymmetric fuzzy coefficients and fuzzified neural networks. Fuzzy Sets Syst. 2001, 119, 273–290. [Google Scholar] [CrossRef]
- Chen, F.; Chen, Y.; Zhou, J.; Liu, Y. Optimizing h value for fuzzy linear regression with asymmetric triangular fuzzy coeffi-cients. Eng. Appl. Artif. Intell. 2016, 47, 16–24. [Google Scholar] [CrossRef]
- The Faculty and Institute of Actuaries. Claims Reserving Manual, 2nd ed.; The Faculty and Institute of Actuaries: London, UK, 1997. [Google Scholar]
- Schmidt, K.D.; Zocher, M. The Bornhuetter-Ferguson. Variance 2008, 2, 85–110. Available online: https://www.casact.org/sites/default/files/2021-07/Bornhuetter-Ferguson-Schmidt-Zocher.pdf (accessed on 9 March 2024).
- Muzzioli, S.; Gambarelli, L.; De Baets, B. Option implied moments obtained through fuzzy regression. Fuzzy Optim. Decis. Making 2020, 19, 211–238. [Google Scholar] [CrossRef]
- Muzzioli, S.; Ruggieri, A.; De Baets, B. A comparison of fuzzy regression methods for the estimation of the implied volatility smile function. Fuzzy Sets Syst. 2015, 266, 131–143. [Google Scholar] [CrossRef]
- Andrés-Sánchez, J. Fuzzy claim reserving in nonlife insurance. Comput. Sci. Inf. Syst. 2014, 11, 825–838. [Google Scholar]
- Cummins, D.J.; Derrig, R.A. Fuzzy financial pricing of property-liability insurance. N. Am. Actuar. J. 1997, 1, 21–40. [Google Scholar] [CrossRef]
- Mircea, I.; Covrig, M. A discrete time insurance model with reinvested surplus and a fuzzy number interest rate. Procedia Econ. Financ. 2015, 32, 1005–1011. [Google Scholar] [CrossRef]
- Ungureanu, D.; Vernic, R. On a fuzzy cash flow model with insurance applications. Decis. Econ. Financ. 2015, 38, 39–54. [Google Scholar] [CrossRef]
Method to Fit Fuzzy Parameters | Note Extensions | Taylor’s Separation Method | Two-Way Methods |
---|---|---|---|
Heuristically | [4,14,15,18] | --- | --- |
FR-MFP | [3,13] | [23,24] | [19,20,25] |
FR-FLS | [26] | [21] | [22] |
Development/Payment Period | ||||||||
---|---|---|---|---|---|---|---|---|
i|j | 0 | 1 | … | j = n − i | … | n − 1 | n | |
Occurrence/Origin Period | 0 | C0,0 | C0,1 | … | C0,j | … | C0,n−1 | C0,n |
1 | C1,0 | C1,1 | … | C1,j | … | C1,n−1 | ||
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | |||
i | Ci,0 | Ci,1 | … | Ci,n−i | … | |||
⋮ | ⋮ | ⋮ | ⋮ | |||||
n − 1 | Cn−1,0 | Cn−1,1 | … | |||||
n | Cn,0 | … |
Development/Payment Period | ||||||||
---|---|---|---|---|---|---|---|---|
0 | 1 | … | j = n − i | … | n − 1 | n | ||
Occurrence/Origin Period | 0 | S0,0 | S0,1 | … | S0,j | … | S0,n−1 | S0,n |
1 | S1,0 | S1,1 | … | S1,j | … | S1,n−1 | ||
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | |||
i | Si,0 | Si,1 | … | Si,n−i | … | |||
⋮ | ⋮ | ⋮ | ⋮ | |||||
n − 1 | Sn−1,0 | Sn−1,1 | … | |||||
n | Sn,0 | … |
i|j | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
0 | 1001 | 1855 | 2423 | 2988 | 3335 | 3403 |
1 | 1113 | 2103 | 2774 | 3422 | 3844 | |
2 | 1265 | 2433 | 3233 | 3977 | ||
3 | 1490 | 2873 | 3883 | |||
4 | 1725 | 3261 | ||||
5 | 1889 | |||||
1.899 | 1.329 | 1.232 | 1.120 | 1.020 |
78.38 | 567.93 | 1584.67 | 2842.10 | 4826.23 | 9899.31 |
Observed Incremental Claims | Theoretical Incremental Claims | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
i|j | 0 | 1 | 2 | 3 | 4 | 5 | i|j | 0 | 1 | 2 | 3 | 4 | 5 |
0 | 1001 | 854 | 568 | 565 | 347 | 68 | 0 | 957.27 | 861.02 | 598.44 | 561.04 | 357.24 | 68 |
1 | 1113 | 990 | 671 | 648 | 422 | 1 | 1103.37 | 992.43 | 689.78 | 646.66 | 411.76 | ||
2 | 1265 | 1168 | 800 | 744 | 2 | 1278.49 | 1149.95 | 799.26 | 749.30 | ||||
3 | 1490 | 1383 | 1010 | 3 | 1538.06 | 1383.41 | 961.53 | ||||||
4 | 1725 | 1536 | 4 | 1716.81 | 1544.19 | ||||||||
5 | 1889 | 5 | 1889 |
α | ||||
---|---|---|---|---|
1 | [78.38, 78.38] | [567.93, 567.93] | [1584.67, 1584.67] | [2842.10, 2842.10] |
0.25 | [76.94, 79.83] | [564.14, 571.63] | [1577.02, 1592.89] | [2830.92, 2852.36] |
0.5 | [75.08, 81.62] | [560.41, 576.65] | [1569.64, 1602.17] | [2820.37, 2866.04] |
0.75 | [71.78, 87.40] | [554.77, 583.26] | [1558.79, 1613.60] | [2804.07, 2883.77] |
0.1 | [69.09, 91.11] | [548.46, 589.15] | [1547.12, 1625.22] | [2787.26, 2901.24] |
0.05 | [68.06, 92.87] | [544.98, 593.35] | [1539.65, 1633.24] | [2775.83, 2915.09] |
0.01 | [66.74, 94.64] | [537.02, 602.96] | [1522.32, 1651.93] | [2751.60, 2942.85] |
0 | [63.68, 97.77] | [526.48, 628.62] | [1507.29, 1677.46] | [2720.66, 2997.42] |
α | ||||
1 | [4826.23, 4826.23] | [9899.31, 9899.31] | [9899.31, 9899.31] | |
0.25 | [4808.51, 4838.96] | [9857.53, 9935.67] | [9866.55, 9930.80] | |
0.5 | [4792.94, 4859.91] | [9818.44, 9986.38] | [9834.38, 9972.34] | |
0.75 | [4768.92, 4887.95] | [9758.33, 10,055.97] | [9786.68, 10,028.49] | |
0.1 | [4739.83, 4918.17] | [9691.76, 10,124.88] | [9733.84, 10,078.13] | |
0.05 | [4721.56, 4937.74] | [9650.07, 10,172.29] | [9702.70, 10,107.32] | |
0.01 | [4682.60, 4994.47] | [9560.29, 10,286.87] | [9644.19, 10,193.22] | |
0 | [4641.72, 5105.40] | [9459.82, 10,506.67] | [9533.03, 10,481.08] |
i|j | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
0 | 1.853 | 1.306 | 1.233 | 1.116 | 1.020 | |
1 | 1.889 | 1.319 | 1.234 | 1.123 | ||
2 | 1.923 | 1.329 | 1.230 | |||
3 | 1.928 | 1.352 | ||||
4 | 1.890 | |||||
5 |
Parameters of Intuitionistic Fuzzy Regression (Alternative 1) | |||||
---|---|---|---|---|---|
j | 0 | 1 | 2 | 3 | 4 |
1.891 | 1.329 | 1.232 | 1.120 | 1.020 | |
0.038 | 0.023 | 0.002 | 0.004 | --- | |
0.140 | 0.179 | 0.457 | 0.500 | --- | |
0.044 | 0.028 | 0.003 | 0.007 | 0.003 | |
0.049 | 0.031 | 0.004 | 0.009 | 0.004 | |
Parameters of Intuitionistic Fuzzy Regression (Alternative 2) | |||||
j | 0 | 1 | 2 | 3 | 4 |
1.8995 | 1.3291 | 1.2321 | 1.1200 | 1.0204 | |
0.0463 | 0.0229 | 0.0020 | 0.0038 | --- | |
0.0000 | 0.0000 | 0.4179 | 0.4274 | --- | |
0.0463 | 0.0229 | 0.0035 | 0.0067 | 0.0035 | |
0.0515 | 0.0255 | 0.0042 | 0.0081 | 0.0042 |
Alternative 1 | Alternative 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|
α | |||||||||
1 | 0 | 9868.25 | 9868.25 | 9868.25 | 9868.25 | 9899.31 | 9899.31 | 9899.31 | 9899.31 |
0.75 | 0.25 | 9694.52 | 10,043.12 | 9663.92 | 10,074.16 | 9733.86 | 10,065.82 | 9708.72 | 10,091.30 |
0.5 | 0.5 | 9521.94 | 10,219.16 | 9461.17 | 10,281.66 | 9569.46 | 10,233.40 | 9519.52 | 10,284.69 |
0.25 | 0.75 | 9350.50 | 10,396.36 | 9260.00 | 10,490.77 | 9406.10 | 10,402.04 | 9331.70 | 10,479.50 |
0 | 1 | 9180.19 | 10,574.72 | 9060.38 | 10,701.50 | 9243.80 | 10,571.76 | 9145.26 | 10,675.72 |
α | |||||||||
1 | 0 | 9868.25 | 9868.25 | 9868.25 | 9868.25 | 9899.31 | 9899.31 | 9899.31 | 9899.31 |
0.75 | 0.25 | 9693.94 | 10,042.55 | 9663.13 | 10,073.36 | 9733.33 | 10,065.29 | 9708.02 | 10,090.60 |
0.5 | 0.5 | 9519.64 | 10,216.85 | 9458.01 | 10,278.48 | 9567.35 | 10,231.27 | 9516.73 | 10,281.88 |
0.25 | 0.75 | 9345.34 | 10,391.15 | 9252.90 | 10,483.59 | 9401.36 | 10,397.25 | 9325.45 | 10,473.17 |
0 | 1 | 9171.04 | 10,565.45 | 9047.78 | 10,688.71 | 9235.38 | 10,563.24 | 9134.16 | 10,664.46 |
α | |||||||||
1 | 0 | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% |
0.75 | 0.25 | 0.01% | 0.01% | 0.01% | 0.01% | 0.01% | 0.01% | 0.01% | 0.01% |
0.5 | 0.5 | 0.02% | 0.02% | 0.03% | 0.03% | 0.02% | 0.02% | 0.03% | 0.03% |
0.25 | 0.75 | 0.06% | 0.05% | 0.08% | 0.07% | 0.05% | 0.05% | 0.07% | 0.06% |
0 | 1 | 0.10% | 0.09% | 0.14% | 0.12% | 0.09% | 0.08% | 0.12% | 0.11% |
Alternative 1 | Alternative 2 | |
---|---|---|
(78.38, 12.28, 15.05) | (78.38, 13.34, 16.11) | |
(567.93, 43.40, 53.90) | (567.93, 42.66, 51.62) | |
(1584.67, 66.38, 82.21) | (1584.67, 66.72, 80.69) | |
(2842.10, 200.87, 236.11) | (2842.10, 179.74, 207.03) | |
(4795.16, 374.28, 433.19) | (4826.23, 361.47, 409.70) | |
(9868.25, 697.21, 820.46) | (9899.31, 663.93, 765.15) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrés-Sánchez, J.D. Calculating Insurance Claim Reserves with an Intuitionistic Fuzzy Chain-Ladder Method. Mathematics 2024, 12, 845. https://doi.org/10.3390/math12060845
Andrés-Sánchez JD. Calculating Insurance Claim Reserves with an Intuitionistic Fuzzy Chain-Ladder Method. Mathematics. 2024; 12(6):845. https://doi.org/10.3390/math12060845
Chicago/Turabian StyleAndrés-Sánchez, Jorge De. 2024. "Calculating Insurance Claim Reserves with an Intuitionistic Fuzzy Chain-Ladder Method" Mathematics 12, no. 6: 845. https://doi.org/10.3390/math12060845
APA StyleAndrés-Sánchez, J. D. (2024). Calculating Insurance Claim Reserves with an Intuitionistic Fuzzy Chain-Ladder Method. Mathematics, 12(6), 845. https://doi.org/10.3390/math12060845