The Build-Up Construction for Codes over a Commutative Non-Unitary Ring of Order 9
Abstract
:1. Introduction
2. Preliminaries
2.1. The Ring
2.2. Codes over
2.3. Codes over
2.4. Mass Formulas
- (i)
- If is odd, then
- (ii)
- If is even, then
3. Constructions
3.1. Construction of Self-Orthogonal Codes
- (i)
- , and , or
- (ii)
- and .
- (i)
- If and , then
- (ii)
- If and , then
- 1.
- , and , or
- 2.
- , and .
3.2. Construction of Quasi Self-Dual Codes
3.3. Construction of Self-Dual Codes
- (i)
- is self-dual ternary code,
- (ii)
- .
4. Computational Results
4.1. Length 1
4.2. Length 2
4.3. Length 3
- For type , there is one quasi self-dual code over , with generator matrix
- For type , there are four distinct self-orthogonal codes over , with generator matrices in the following table:
Generator Weight Generator Weight Matrix Distribution Matrix Distribution 12 4 4 6 For length 3 and type , we have - For type , there are five distinct quasi self-dual codes over , with generator matrices in the following table:
Generator Weight Generator Weight Matrix Distribution Matrix Distribution 4 2 12 12 12 For length 3 and type , we have
4.4. Length 4
- For type , there is one quasi self-dual code over , with generator matrix
- For type , there are eight distinct self-orthogonal codes over , with generator matrices in the following table:
Generator Weight Generator Weight Matrix Distribution Matrix Distribution 24 8 8 12 4 4 12 6 For length 4 and type , we have - For type , there are 23 distinct self-orthogonal codes over , with generator matrices in the following table:
Generator Weight Generator Weight Matrix Distribution Matrix Distribution 24 8 8 12 4 2 2 2 4 4 24 24 24 24 12 4 4 6 8 4 8 4 2 For length 4 and type , we have - For type , there are 10 distinct quasi self-dual codes over , with generator matrices in the following table:
Generator Weight Generator Weight Matrix Distribution Matrix Distribution 8 4 4 2 24 24 24 12 12 12 For length 4 and type , we have - For type , there are nine quasi self-dual codes over , with generator matrices in the following table.
Generator Weight Generator Weight Matrix Distribution Matrix Distribution 48 12 12 2 6 6 4 4 8 For length 4 and type , we have - For type , there is an unique self-dual code over , with generator matrix:
Generator Matrix Weight Distribution 48 For length 4 and type , we have
4.5. Length 5
- For type , there are five distinct self-orthogonal codes over , with generator matrices in the following table.
Generator Weight Generator Weight Matrix Distribution Matrix Distribution 192 240 96 768 64 For length 5 and type , we have - For type , there is one quasi self-dual code over , with generator matrix
- For type , there are 12 distinct self-orthogonal codes over , with generator matrices in the following table:
Generator Weight Generator Weight Matrix Distribution Matrix Distribution 96 32 32 48 24 8 8 12 24 8 12 8 For length 5 and type , we have - For type , there are 15 quasi self-dual codes over , with generator matrices in the following table:
Generator Weight Generator Weight Matrix Distribution Matrix Distribution 32 16 8 4 8 4 96 96 96 24 24 24 24 24 24 For length 5 and type , we have
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, S.; Lee, H.; Lee, Y. Construction of self-dual codes over . Bull. Korean Math. Soc. 2012, 49, 135–143. [Google Scholar] [CrossRef]
- Kim, J.-L.; Lee, Y. Euclidean and hermitian self-dual MDS codes over large finite fields. J. Comb. Theory Ser. 2004, 105, 79–95. [Google Scholar] [CrossRef]
- Kim, J.-L.; Lee, Y. An efficient construction of self-dual codes. Bull. Korean Math. Soc. 2015, 52, 915–923. [Google Scholar] [CrossRef]
- Aguilar-Melchor, C.; Gaborit, P.; Kim, J.; Sok, L.; Solé, P. Classification of extremal and s-extremal binary self-dual codes of length 38. IEEE Trans. Inf. Theory 2012, 58, 2253–2262. [Google Scholar] [CrossRef]
- Kim, J.-L.; Roe, Y.G. Construction of quasi self-dual codes over a commutative non-unital ring of order 4. In Applicable Algebra in Engineering, Communication and Computing; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Alahmadi, A.; Alkathiry, A.; Altassan, A.; Bonnecaze, A.; Shoaib, H.; Solé, P. The build-up construction over a commutative non-unital ring. Des. Codes Cryptogr. 2022, 90, 3003–3010. [Google Scholar] [CrossRef]
- Alahmadi, A.; Altassan, A.; Basaffar, W.; Bonnecaze, A.; Shoaib, H.; Solé, P. Quasi type IV codes over a non-unital ring. Appl. Algebra Eng. Commun. Comput. 2021, 32, 217–228. [Google Scholar] [CrossRef]
- Fine, B. Classification of finite rings of order p2. Math. Mag. 1993, 66, 248–252. [Google Scholar] [CrossRef]
- Kim, K.H.; Park, Y.H. The mass formula of self-orthogonal codes over GF(q). Korean J. Math. 2017, 25, 201–209. [Google Scholar]
- Pless, V. Number of isotropic subspaces in a finite geometry. In Atti della Accademia Nazionale dei Lincei Rendiconti-Classe di Scienze Fisiche-Matematiche & Naturali; Accad Nationale Lincei Ufficio Pubblicazioni: Via Della Lungara 10, Rome, Italy, 1965; Volume 39, pp. 418–421. [Google Scholar]
- Pless, V. On the uniqueness of the Golay codes. J. Comb. Theory 1968, 5, 215–228. [Google Scholar] [CrossRef]
- Alahmadi, A.; Alshuhail, A.; Solé, P. The mass formula for self-orthogonal and self-dual codes over a non-unitary commutative ring. AIMS Math. 2023, 8, 24367–24378. [Google Scholar] [CrossRef]
- Alahmadi, A.; Melaibari, A.; Solé, P. Duality of codes over non-unital rings of order four. IEEE Access 2023, 11, 53120–53133. [Google Scholar] [CrossRef]
- Mallows, C.; Pless, V.; Sloane, N.J. Self-dual codes over GF(3). Appl. Math. 1976, 31, 649–666. [Google Scholar] [CrossRef]
- Bosma, W.; Cannon, J.; Playoust, C. The Magma algebra system. I. The user language. J. Symb. Comput. 1997, 24, 235–265. [Google Scholar] [CrossRef]
+ | 0 | a | b | c | d | e | f | g | h |
0 | 0 | a | b | c | d | e | f | g | h |
a | a | e | c | f | g | 0 | b | h | d |
b | b | c | d | g | 0 | f | h | a | e |
c | c | f | g | h | a | b | d | e | 0 |
d | d | g | 0 | a | b | h | e | c | f |
e | e | 0 | f | b | h | a | c | d | g |
f | f | b | h | d | e | c | g | 0 | a |
g | g | h | a | e | c | d | 0 | f | b |
h | h | d | e | 0 | f | g | a | b | c |
× | 0 | a | b | c | d | e | f | g | h |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
a | 0 | b | 0 | b | 0 | d | d | b | d |
b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
c | 0 | b | 0 | b | 0 | d | d | b | d |
d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
e | 0 | d | 0 | d | 0 | b | b | d | b |
f | 0 | d | 0 | d | 0 | b | b | d | b |
g | 0 | b | 0 | b | 0 | d | d | b | d |
h | 0 | d | 0 | d | 0 | b | b | d | b |
n | Code | Construction | Length of Constructed Code | x | Weight Distribution | |
---|---|---|---|---|---|---|
1 | Theorem 4 | 4 | 1 | |||
Theorem 6 | 1 | |||||
2 | Theorem 4 | 5 | 1 | |||
Theorem 6 | 5 | 1 | ||||
Theorem 7 | 6 | , | 1 | |||
Corollary 4 | 5 | 1 | ||||
3 | Theorem 4 | 6 | 1 | |||
Corollary 4 | 6 | 1 | ||||
Theorem 6 | 6 | 1 | ||||
Theorem 7 | 7 | , | 1 | |||
Theorem 4 | 6 | 2 | ||||
3 | ||||||
Corollary 4 | 6 | 2 | ||||
Theorem 4 | 6 | 2 | ||||
3 | ||||||
Corollary 4 | 6 | 2 | ||||
Theorem 4 | 6 | 2 | ||||
3 | ||||||
Corollary 4 | 6 | 2 | ||||
Theorem 4 | 6 | 2 | ||||
3 | ||||||
Corollary 4 | 6 | 2 | ||||
Theorem 4 | 6 | 1 | ||||
1 | ||||||
1 | ||||||
Corollary 4 | 6 | 1 | ||||
1 | ||||||
1 | ||||||
Theorem 6 | 6 | 1 | ||||
1 | ||||||
1 | ||||||
1 | ||||||
Theorem 7 | 7 | , | 1 | |||
Theorem 4 | 6 | 1 | ||||
1 | ||||||
1 | ||||||
Corollary 4 | 6 | 1 | ||||
1 | ||||||
1 | ||||||
Theorem 6 | 6 | 1 | ||||
1 | ||||||
1 | ||||||
1 | ||||||
Theorem 7 | 7 | , | 1 | |||
, | 1 | |||||
Theorem 4 | 6 | 1 | ||||
1 | ||||||
1 | ||||||
Theorem 6 | 6 | 1 | ||||
2 | ||||||
Corollary 4 | 6 | 2 | ||||
1 | ||||||
Theorem 7 | 7 | , | 2 | |||
Theorem 4 | 6 | 1 | ||||
1 | ||||||
Theorem 6 | 6 | 1 | ||||
Corollary 4 | 6 | 2 | ||||
1 | ||||||
Theorem 7 | 7 | , | 2 | |||
Theorem 4 | 6 | 1 | ||||
2 | ||||||
2 | ||||||
Theorem 6 | 6 | 1 | ||||
2 | ||||||
Corollary 4 | 6 | 2 | ||||
1 | ||||||
4 | Theorem 4 | 7 | 1 | |||
Corollary 4 | 7 | 1 | ||||
Theorem 6 | 7 | 1 | ||||
Theorem 7 | 8 | , | 1 | |||
Theorem 4 | 7 | 3 | ||||
4 | ||||||
3 | ||||||
Corollary 4 | 7 | 2 | ||||
2 | ||||||
2 | ||||||
2 | ||||||
Theorem 4 | 7 | 3 | ||||
3 | ||||||
Corollary 4 | 7 | 2 | ||||
2 | ||||||
2 | ||||||
Theorem 4 | 7 | 3 | ||||
3 | ||||||
3 | ||||||
Corollary 5 | 7 | 2 | ||||
2 | ||||||
2 | ||||||
Theorem 4 | 7 | 3 | ||||
3 | ||||||
Corollary 4 | 7 | 2 | ||||
2 | ||||||
2 | ||||||
Theorem 4 | 7 | 1 | ||||
3 | ||||||
3 | ||||||
Corollary 4 | 7 | 1 | ||||
2 | ||||||
2 | ||||||
Theorem 4 | 7 | 2 | ||||
2 | ||||||
2 | ||||||
Corollary 4 | 7 | 2 | ||||
2 | ||||||
2 | ||||||
2 | ||||||
2 | ||||||
Theorem 4 | 7 | 3 | ||||
3 | ||||||
3 | ||||||
Corollary 4 | 7 | 2 | ||||
2 | ||||||
2 | ||||||
2 | ||||||
Theorem 4 | 7 | 1 | ||||
2 | ||||||
2 | ||||||
1 | ||||||
Corollary 4 | 7 | 1 | ||||
2 | ||||||
2 | ||||||
2 | ||||||
1 | ||||||
Theorem 4 | 7 | 1 | ||||
2 | ||||||
2 | ||||||
Corollary 4 | 7 | 1 | ||||
2 | ||||||
2 | ||||||
Theorem 6 | 7 | 1 | ||||
2 | ||||||
1 | ||||||
Theorem 7 | 8 | , | 1 | |||
, | 1 | |||||
, | 1 | |||||
, | 1 | |||||
(1002), | 2 | |||||
, | 2 | |||||
Theorem 4 | 7 | 1 | ||||
1 | ||||||
2 | ||||||
1 | ||||||
Corollary 4 | 7 | 1 | ||||
1 | ||||||
2 | ||||||
1 | ||||||
Theorem 6 | 7 | (2000) | 1 | |||
2 | ||||||
1 | ||||||
Theorem 7 | 8 | , | 1 | |||
, | 2 | |||||
, | 1 | |||||
, | 1 | |||||
, | 2 | |||||
, | 2 | |||||
Theorem 4 | 7 | 2 | ||||
2 | ||||||
2 | ||||||
1 | ||||||
Corollary 4 | 7 | 2 | ||||
2 | ||||||
2 | ||||||
1 | ||||||
Theorem 6 | 7 | (2000) | 2 | |||
1 | ||||||
Theorem 7 | 8 | , | 2 | |||
, | 2 | |||||
, | 1 | |||||
, | 2 | |||||
Theorem 4 | 7 | 1 | ||||
2 | ||||||
2 | ||||||
Corollary 4 | 7 | 2 | ||||
2 | ||||||
2 | ||||||
Theorem 6 | 7 | (2000) | 1 | |||
1 | ||||||
Theorem 7 | 8 | , | 1 | |||
, | 2 | |||||
, | 2 | |||||
Theorem 7 | 8 | , | 3 | |||
Theorem 6 | 7 | (2000) | 1 | |||
Theorem 4 | 7 | 3 | ||||
3 | ||||||
Corollary 4 | 7 | 2 | ||||
2 | ||||||
2 | ||||||
Theorem 9 | 8 | , | 1 | |||
Theorem 4 | 7 | 1 | ||||
1 | ||||||
1 | ||||||
Corollary 4 | 7 | 1 | ||||
1 | ||||||
1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alahmadi, A.; Alihia, T.; Alma Betty, R.; Galvez, L.; Solé, P. The Build-Up Construction for Codes over a Commutative Non-Unitary Ring of Order 9. Mathematics 2024, 12, 860. https://doi.org/10.3390/math12060860
Alahmadi A, Alihia T, Alma Betty R, Galvez L, Solé P. The Build-Up Construction for Codes over a Commutative Non-Unitary Ring of Order 9. Mathematics. 2024; 12(6):860. https://doi.org/10.3390/math12060860
Chicago/Turabian StyleAlahmadi, Adel, Tamador Alihia, Rowena Alma Betty, Lucky Galvez, and Patrick Solé. 2024. "The Build-Up Construction for Codes over a Commutative Non-Unitary Ring of Order 9" Mathematics 12, no. 6: 860. https://doi.org/10.3390/math12060860
APA StyleAlahmadi, A., Alihia, T., Alma Betty, R., Galvez, L., & Solé, P. (2024). The Build-Up Construction for Codes over a Commutative Non-Unitary Ring of Order 9. Mathematics, 12(6), 860. https://doi.org/10.3390/math12060860